Using mobile network big data for land use classification

Kaushalya Madhawa, Sriganesh Lokanathan, Danaja Maldeniya, Rohan Samarajiva

CPRsouth 2015

Taipei City, Taiwan 25th August 2015

Implications of using mobile network big data for urban policy

- Almost real-time monitoring of urban land use
- Help align master plan to reality
- Complement infrequent and expensive surveys

The data: historical and anonymized Call Detail Records (CDRs) from Sri Lanka

- Call Detail Record (CDR):
 - Records of all calls made and received by a person created mainly for the purposes of billing
 - Similar records exist for all SMS-es sent and received as well as for all Internet sessions

Calling Party	Called Party	Caller Cell	Call Time	Call
Number	Number	ID		Duration
A24BC1571X	B321SG141X	3134	13-04-2013 17:42:14	00:03:35

- The Cell ID in turn has a lat-long position associated with it
- CDR data for 1 month in 2013
 - Covers under 10 million SIMs
 - Nearly 1.5 billion records of calls made and received

The hourly loading of base stations reveals distinct patterns

 We can use this insight to group base stations into different groups, using unsupervised machine learning techniques

Methodology

- The time series of users connected at a base station contains variations, that can be grouped by similar characteristics
- A month of data is collapsed into an indicative week (Sunday to Saturday), with the time series normalized by the z-score
- Principal Component Analysis(PCA) is used to identify the discriminant patterns from noisy time series data

- Each base station's pattern is filtered into 15 principal components (covering 95% of the data for that base station)
- Using the 15 principal components, we cluster all the base stations into 3 clusters in an unsupervised manner using k-means algorithm

Three spatial clusters in Colombo District

- Cluster-1 exhibits patterns consistent with commercial area
- Cluster-3 exhibits patterns consistent with residential area
- Cluster-2 exhibits patterns more consistent with mixed-use

Our results show Central Business District (CBD) in Colombo city has expanded

Small area in NE corner of Colombo District classified as belonging to Cluster 1?

We use silhouette coefficients to understand the quality of the clustering

 Silhouette coefficient indicates quality of clustering

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

a(i) - average distance of i with all other data within the same cluster

b(i) - average distance of i with all other data within the neighboring cluster

 Based on the s-values, Cluster 3 is the least coherent amongst the three

Cluster	Avg. Silhouette Coefficient
1 – Commercial	0.46
2 – Residential	0.36
3 – Mixed-use	0.22

Internal variations in mixed use regions: More commercial or more residential?

• To evaluate the relative closeness to the other two clusters, we define extent of commercialization as:

Plans & reality

1985 Plan

2020 UDA Plan

2013 reality

Policy implications and future work

- Almost real-time monitoring of urban land use
 - We are currently working on understanding finer temporal variations in zone characteristics (especially the mixed-use areas)
- Help align master plan to reality
- Can complement infrequent & expensive surveys
- LIRNEasia is working to unpack the identified categories further, e.g.,
 - Entertainment zones that show evening activity

