ICT in Education: A Case of Singapore’s Strategies in Scaling Implementation

Longkai WU
National Institute of Education (NIE)
Nanyang Technological University
Singapore
Tenets

• Background Singapore’s Master Plan
• A Case of Implementation and Scaling of ICT
Need for ICT in Ed Masterplans

• Human capital development – key national focus

• Alignment of economic, manpower & education policies

• ICT in Ed:
 • Preparation for knowledge-based environment
 • Enhance learning experiences

Acknowledgement:
Slides 4-8 are courtesy of Dr Cheah Horn Mun, Former Director, Education Technology Division, Singapore
ICT in Ed Masterplan Journey

Masterplan 1
Building the Foundation

Masterplan 2
2003
Seeding Innovation

Masterplan 3
2009
Strengthening & Scaling
Core ICT Training for all teachers

ICT Infrastructure & Support for all schools

Educational software & resources for relevant subjects

1997: Masterplan 1
Building the Foundation

ICT became an accepted tool for teaching & learning
2003: Masterplan 2
Seeding Innovation

Baseline ICT Standards for all

Established Baseline ICT Standards for pupils

Remaining Schools

Generate innovative practices through schemes

LEAD ICT Schools 15-20% schs

FS@SG 5% schs

Gave autonomy through devolved ICT funds
‘Curriculum 2015’ Student Outcomes

<table>
<thead>
<tr>
<th>Confident Person</th>
<th>Self-directed Learner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinks independently</td>
<td>Takes responsibility for own learning</td>
</tr>
<tr>
<td>Communicates effectively</td>
<td>Questions, reflects, perseveres</td>
</tr>
<tr>
<td>Has good inter-personal skills</td>
<td>Uses technology adeptly</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concerned Citizen</th>
<th>Active Contributor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is informed about world and local affairs</td>
<td>Exercises initiative and takes risks</td>
</tr>
<tr>
<td>Empathises with and respects others</td>
<td>Is adaptable, innovative, resilient</td>
</tr>
<tr>
<td>Participates actively</td>
<td>Aims for high standards</td>
</tr>
</tbody>
</table>

mp3 Goal

Students develop competencies for self-directed and collaborative learning through the effective use of ICT as well as become discerning and responsible ICT users.

2009: Masterplan 3

Strengthening and Scaling
Necessary Transformation

1st Masterplan
Build Foundation

- ICT supporting curriculum

2nd Masterplan
Seed Innovation

- ICT integrated into curriculum & assessment

3rd Masterplan
Strengthen & Scale

- ICT embedded into syllabuses & teaching guides

Curriculum, & Assessment

- Core training for all teachers and school leaders

Professional Development

- Differentiated Prof Development
- Consultancy to school leaders

Research & Development

- Spearheading R&D efforts in collaboration with industry & schools
- Seeding innovation in schools
- Translating research to influence classroom practices

Infrastructure for Learning

- Central provision to equip all schools
- One-size-fits-all
- Flexible provision to suit schools needs
- Closer alignment to curriculum changes and schools needs
• How MP3 strategies have been enacted on the ground?
 • A case study: Implementation and Scaling of Seamless Learning from one school to more schools
Seamless Learning

• Scale from what to what?
 • From two science teachers to all science teachers in level

• Why scaling?
 • Research study of efficacies showed learning gains in subject matter, positive attitudes to subject learning, new media literacy, good learning habit – self-directed learning
 • More holistic learning with mobile device as a learning hub to support seamless learning in classroom and outside of classroom
 • Teachers developed constructivist practices
Seamless Learning

• Why is it (or not quite) ready for scaling? *(When to scale?)*
 • Design principles are ready
 • Increased teachers’ awareness of the value of mobile learning principles
 • More design of learning activities is needed
 • Don’t quite have model of balancing needs for mobilized curricula & preparing students for exams
 • But PD models are not quite tested (how to spread it within the school and how can the average teacher take over); the current PD is “expensive”
 • Parents’ concern (e.g., screen size, monitoring students’ mobile use, cyberwellness)

• How to scale?
 • Teacher CoPs
 • Sharing MLE platform, lesson plans, exemplar lesson videos
• The innovation in Coburn (2003) and Clarke and Dede (2009)’s framework

Depth
- Effectiveness in students’ learning outcomes (both exam results and attitudes) and teacher’s transformation in pedagogical practices in school N

Sustainability
- The innovation was sustainably used and refined in the school N for five years (2009-2014)

Spread
- The innovation has scaled up in the grade level, school level and now in cluster level

Shift in Ownership
- The school N has taken over ownership by driving the spread of the IBSL innovation within school and across schools

Evolution
- The innovation developer is refining the design principles to be more feasible for practitioners
Implementation Design

- **Seeding-Seeded Schools**
 - More Centralized Network with Seeding School Taking the Pivotal Role

- **Cross-School Teacher Community of Practice**
 - To share successes and failures
 - To share resources
 - To reflect teaching practices

- **Systemic Support System**
 - School Principals, HODs of Science and ICT
 - Within-School PLC
 - AED and IT technician support
Stage 1: Knowledge Acquisition
- Learning of characteristics of IBSL (especially the effectiveness, simplicity, trialability) through:
 - Researcher’s sharing of study results
 - Lesson observations of EAT’s in school N
 - Lesson co-design with across schools community for P3 lessons with focus on inquiry learning, and use of technology
 - Familiarization of design principles for IBSL lessons

Stage 2: Curriculum Implementation and Establish the Routine Use of IBSL
- Improve understanding of IBSL (especially the trialability, compatibility, cost) through:
 - Lesson co-design for P3 topics
 - Lesson implementation with adaptation in pilot class in P3 in respective school
 - Post-observation conversations to reflect upon teaching practices
 - Share the innovative practices with colleagues in schools

Stage 3: Curriculum Refinement and Integration
- Advance understanding of IBSL through:
 - Lesson co-design for P4 and lesson revision for P3 topics
 - Another round of lesson implementation in P3 class
 - Lesson adaptation according to students’ needs
 - Collaborate with colleagues within school to refine and integrate the curriculum for better use
 - Take leading role in spreading IBSL in school
Results

- Effectiveness and Observability
 - Students’ improvement in answering open-ended questions

The classroom culture of learning as inquiry

<table>
<thead>
<tr>
<th>Marks</th>
<th>Pre-Test</th>
<th>Post-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCQ (4 questions)</td>
<td>5.33 / 8 m</td>
<td>5.66 / 8 m</td>
</tr>
<tr>
<td>OE (3 questions)</td>
<td>2.494 / 6 m</td>
<td>4.069 / 6 m</td>
</tr>
</tbody>
</table>
• Teachers’ Perception of IBSL - Simplicity
 - use of technology
 - student-centered and teacher as facilitator
 - fostering self-directed learner
 - beyond classroom, or in and out of classroom
 - life-long learning
 - 21st century skills
 - enhance students’ interests in science learning
 - fostering students’ critical thinking
 - facilitate collaborative learning

From teacher’s pre- and post-survey
• Teachers’ Perception of IBSL - Compatibility and Feasibility
 • Challenges and Concerns
 • Parents’ buy-in of the use of tablet
 • Technical issues/ technical support from the vendor
 • teacher’s capacity of conducting inquiry-based teaching

• Conditions of sustainable and scalable use
 • My principal/Vice principal has to agree to extend the innovation to other cohort/classes
 • I am willing to use the innovative pedagogy as my routine teaching practice
 • My HOD ICT/Science has to agree to use IBSL for other cohorts/classes

From teachers surveys and interviews
• Teachers’ Implementation of IBSL

- Curriculum Adaptation
- Pedagogical Approach
- Use of Technology
• Teachers’ Adaptation of Curriculum

Evolution:
Take more ownership in curriculum development and evolve the curriculum package by integrating other available innovative resources available.

Refinement:
Customize the curriculum package according to students’ learning abilities, and schools’ resources.

Mechanical use:
Follow the original lesson plan without pondering the rationale of the design and internalizing the curriculum package for own use.

“I enjoyed the lesson co-design a lot. It helps us pedagogically look at how other teachers view the same subject content and come up with ideas of how to teach that particular topic...”
Teachers’ Differences in Pedagogical Approach

Goal-driven teaching approach
- More questions that target on factual knowledge (e.g. definition of strength).
- Teachers tended to correct the wrong answers or ignore the wrong answers.
- Teachers set experiment procedures and students followed them.

Constructivist-oriented teaching approach
- Probe questions to clarify student’s thinking when the teacher received wrong answers.
- Generating arguments when contrasting ideas from students were identified.
- Explicitly address the spirit of inquiry and fair test ideas in experiments.

School A, B, D

School C, E
• **Teachers’ Differences in Use of Technology**

Future direction: Use of **MyDesk apps** and **complementary ICT tools** for seamless learning

Explore use of different ICT-enabled strategies and tools
E.g. use of Edmodo and Socrative for formative assessment

Limited repertoire of ICT-enabled strategies
E.g. only use videos to explaining concepts

School’s status of use of technology

School A, B

School C

School D, E
• Teachers’ content knowledge or their confidence in their content knowledge;
• Teachers’ beliefs in teaching and learning, as well as their beliefs in technology for learning;
• Teachers’ perceptions in students’ learning ability;
• Systematic support from the school leadership
Teacher Capacity Building Model

- Embodied Curriculum Design Experiences
- Mentor-Mentee Relationship both inter- and intra-school
- Meso-level agent supports in provision of PD and mediation between levels of actors
Conclusions

• The model of scaling with seeding effect is feasible for school(s) where an innovation has achieved success to take lead to spread a research-driven innovation.

• Multiple contextual factors intertwine to determine a successful diffusion of innovation in schools. Both top-down and bottom-up structure should be established for sustainable and scalable change in school contexts.

• Establishment of teacher learning community across schools and within school is critical for successful implementation, dissemination and evolution of an innovation.
Thank You!