Big Data for Development in Sri Lanka

Sriganesh Lokanathan, Danaja Maldeniya

Colombo Big Data Meetup, Virtusa Auditorium 26 April 2016

This work was carried out with the aid of a grant from the International Development Research Centre, Canada and the Department for International Development UK.

Our mission

<u>Catalyzing policy change through research to improve</u> <u>people's lives</u> in the emerging Asia Pacific by facilitating their use of hard and soft infrastructures through the use of knowledge, information and technology.

Where we work

Big data work only in Sri Lanka in 2012-16 Extending to Bangladesh 2016 onwards

Big data

- An all-encompassing term for any collection of data sets so large or complex that it becomes difficult to process using traditional data processing applications.
- Challenges include: analysis, capture, curation, search, sharing, storage, transfer, visualization, and privacy violations.
- Examples:
 - 100 million Call Detail Records per day generated by Sri Lanka mobile operators
 - 45 Terabytes of data from Hubble Telescope

Why big data? Why now?

- Proximate causes
 - Increased "datafication": Very large sets of schema-less (unstructured, but processable) data now available
 - Advances in memory technology: No longer is it necessary to archive most data and work with small subset
 - Advances in software: MapReduce, Hadoop

If we want comprehensive coverage of the population, what are the sources of big data in developing economies?

- Administrative data
 - E.g., digitized medical records, insurance records, tax records
- Commercial transactions (transaction-generated data)
 - E.g., Stock exchange data, bank transactions, credit card records, supermarket transactions connected by loyalty card number
- Sensors and tracking devices
 - E.g., road and traffic sensors, climate sensors, equipment & infrastructure sensors, mobile phones communicating with base stations, satellite/ GPS devices
- Online activities/ social media

– E.g., online search activity, online page views, blogs/ FB/ twitter

Currently only mobile network big data has broad population coverage

	Mobile SIMs/100	Internet users/100	Facebook users/100
Myanmar	50	2	12
Banglade sh	76	10	9
Pakistan	73	14	11
India	73	18	9
Sri Lanka	107	26	16
Philippine s	112	40	41
Indonesia	125	17	25
Thailand	Source: ITU Measuring 143	Information Society 2015: Ea 35	cebook advantage portal 49

Pro-poor Pro-market

Data used in the research

- Multiple mobile operators in Sri Lanka have provided four different types of meta-data
 - Call Detail Records (CDRs)
 - Records of calls
 - SMS
 - Internet access
 - Airtime recharge records
- Data sets do not include any Personally Identifiable Information
 - All phone numbers are pseudonymized
 - LIRNE*asia* does not maintain any mappings of identifiers to original phone numbers
- Cover 50-60% of users; very high coverage in Western (where Colombo the capital city in located) & Northern (most affected by civil conflict) Provinces, based on correlation with census data

Work performed by collaborative inter-disciplinary teams

• LIRNEasia

- Danaja Maldeniya
- Dedunu Dhananjaya
- Isuru Jayasooriya
- Kaushalya Madhawa (moved on to Tokyo Institute of Technology)
- Madhushi Bandara
- Nisansa de Silva (moved on to U of Oregon)
- Prof. Rohan Samarajiva
- Sriganesh Lokanathan
- University of Moratuwa
 - Dr. Amal Shehan Perera
 - Data Mining
 - Chatura de Silva
 - Urban Planning
 - Prof. Amal Kumarage
 - Transport
 - Undergraduates working on projects

- LIRNEasia/ MIT
 - Gabriel Kreindler (Economics)
 - Yuhei Miyauchi (Economics)
- Other US Universities
 - Prof. Joshua Blumenstock (U Washington, School of Information)
 - Data Science
 - Saad Gulzar (NYU)
 - Political Science
- Advisory Group:
 - Prof. Louiqa Rashid (U of Maryland)
 - Dr Prabir Sen (former Chief Data Scientist, IDA Singapore)
 - Dr Ruwan Weerasinghe (U of Colombo)
 - Prof Ryosuke Shibasaki (U of Tokyo)
 - Dr. Srinath Perera (WSO2)

The technology used

- We built our own internal Apache Hadoop cluster:
 - 2 Master Nodes & 8 Slave Nodes
 - Total of 30 TB disk space with a replication factor of 2
- Distributed processing frameworks:
 - Apache Pig
 - Apache Hive
 - Apache Giraph
- Tools & libraries:
 - Java & Python
 - R
 - Processing
 - QGIS

Apache Hadoop

- An open source distributed file storage and processing system based on Google's MapReduce and Google file System
- Map-Reduce the processing paradigm of Hadoop is a key-value based approach
 - Map: split data in to buckets based on a specified key value column
 - Reduce: perform specified operations on each bucket. Ex: generate summary statistics
- Native programming interface is Java with support for other languages like Python over the streaming API (less efficient).

Apache Pig

- Apache Pig is a tool that provides a SQL like programming interface on top of Hadoop (Pig Latin)
- Scripts in Pig Latin are converted in to a series of map reduce jobs by the compiler
- Very useful for aggregation related tasks on large datasets
- More complex operations that are not natively supported can be easily added with custom functions written in java
- Not the first choice for implementing complex models/algorithms

R

- A programming language meant for statistical computing and visualization
- Very popular among data scientists and researchers
- Extensive libraries for statistical analysis, machine learning, network analysis and visualization
- The eco-system provides a high level of support for high quality reproducible research/analytics
 - R Studio (a complete IDE)
 - R markdown and Knitr
 - Shiny applications
 - Plotting tools : ggplot, plotly etc.

QGIS

- A open source geographical information system
- Provides extensive spatial analytics and visualization capabilities
- Used for creating map layers with different analytical results for visual inspection/analysis

Processing

- General purpose visualization language/library built on top of Java
- Particularly useful for complex geospatial visualizations (E.g. animating traces of vehicles from the New York (taxidata)

Basic analytical flow

The rest of the presentation

- Understanding land use characteristics
- Measuring urban economic activity
- Understanding Sri Lankan communities
- Other interesting applications
- Analytical challenges

• Understanding land use characteristics

- Measuring urban economic activity
- Understanding Sri Lankan communities
- Other interesting applications
- Analytical challenges

Hourly loading of base stations reveals distinct patterns

 We can use this insight to group base stations into different groups, using unsupervised machine learning

Methodology

- The time series of users connected at a base station contains variations, that can be grouped by similar characteristics
- A month of data is collapsed into an indicative week (Sunday to Saturday), with the time series normalized by the z-score
- Principal Component Analysis(PCA) is used to identify the discriminant patterns from noisy time series data

- Each base station's pattern is filtered into 15 principal components (covering 95% of the data for that base station)
- Using the 15 principal components, we cluster all the base stations into 3 clusters in an unsupervised manner using k-means algorithm

Three spatial clusters in Colombo District

- Cluster-1 exhibits patterns consistent with commercial area
- Cluster-3 exhibits patterns consistent with residential area
- Cluster-2 exhibits patterns more consistent with mixeduse

Our results show Central Business District (CBD) in Colombo city has expanded

Small area in NE corner of Colombo District classified as belonging to Cluster 1?

We use silhouette coefficients to understand the quality of the clustering

• Silhouette coefficient indicates quality of clustering

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

a(i) - average distance of i with all other
data within the same cluster
b(i) - average distance of i with all other
data within the neighboring cluster

Based on the s-values, Cluster
 3 is the least coherent amongst
 the three

Cluster	Avg. Silhouette Coefficient
1 – Commercial	0.46
2 – Residential	0.36
3 – Mixed-use	0.22

Internal variations in mixed use regions: More commercial or more residential?

• To evaluate the relative closeness to the other two clusters, we define extent of commercialization as:

Blue dots: more residential than commercial residential

Red dots: more commercial than

Next we analyzed the variation of commercial and residential model with a more formal model

- We established average temporal signatures for (almost) purely commercial (C) and residential behavior (R) using a set of known locations (seed data)
- A linear model was fit to the temporal signature of each base station in the country

$$S_i = \alpha C + (1 - \alpha)R + \varepsilon$$

Where,

- S_i Temporal signature of base station i
- C Commercial signature
- *R* Residential signature
- ε Error

Commercial to residential spectrum

Highly commercial

Implications for urban policy

- Almost real-time monitoring of urban land use
 - We are currently working on understanding finer temporal variations in zone characteristics (especially the mixed-use areas)
- Can complement infrequent surveys & align master plan to reality
- LIRNE*asia* is working to unpack the identified categories further, e.g.,
 - Entertainment zones that show evening activity

- Understanding land use characteristics
- Measuring urban economic activity
- Understanding Sri Lankan communities
- Other interesting applications
- Analytical challenges

What does mobility tell us about economic activity?

Economic activity = (number of workers) × (productivity per worker)

•We assume more productive regions are more attractive destinations

•Commuting patterns emerge from the trade-off between attractiveness of a workplace and the cost of getting there

Example of commuting flows from one origin

Theoretical model outline

Agent ω at residential location *i* chooses work location *j* offering wage w_j and at distance d_{ij} , and ω has effective income at *j*

$$y_{ij\omega} = \frac{w_j z_{ij\omega}}{d_{ij}}$$

where $z_{ij\omega}$ is iid Fréchet-distributed random productivity shock. Commuting flow probabilities:

$$\pi_{ij} = \frac{\left(w_j/d_{ij}\right)^{\epsilon}}{\sum_s (w_s/d_{is})^{\epsilon}}$$

We estimate origin-constrained gravity model:

$$\log(\pi_{ij}) = \psi_j + \epsilon \log(d_{ij}) - \mu_i + \varepsilon_{ij}$$

Economic activity/km²

Model validation using nightlight data from satellites Nightlights Mean income

Incorporating other data can give further insights

Household data: Census/HIES/LFS Industrial data: ASI, Industrial Census

	Nightlights	Household data	Industrial Data
Geographic variation			
Time variation	yearly	quarterly/ 2-3yrs/decade	yearly/decade
Relevant variables		Education, (un)employment, skill levels	Employment, capital intensity
Ideal for:		Improving Measure	Improving & Validation

Benefit of an improved framework for modeling economic activity

- Increase the coverage of existing surveys (both temporal and geographic)
 - By calibrating with household, industry census and survey data, when available
 - Then, mobile data can be used to predict/extrapolate for time periods and regions without survey data
- Can capture informal economic activity
 - Other research suggests informal economy is almost 30% of GDP in Sri Lanka

- Understanding land use characteristics
- Measuring urban economic activity
- Understanding Sri Lankan communities
- Other interesting applications
- Analytical Challenges

Prima facie, Colombo city (Colombo & Thimbirigasyaya

DSDs) seems to be the center Sri Lanka's social network

- Each link represents the raw number of outgoing and incoming calls between two DSDs
 - Divisional Secretariat
 Division (DSD) is a third level administrative division; 331 in total in LK

No. of calls

A different picture emerges when call volume is normalized by population

Normalized calls $(DSD_1, DSD_2) = \frac{No. of calls (DSD_1, DSD_2)}{Population (DSD_1) \times Population (DSD_2)}$

• Strongly connected regional networks become visible

Identifying communities: methodology

- The social network is segregated such that overlapping connections between communities are minimized
- Strength of a community is determined by *modularity*
 - Modularity Q = (edges inside the community) –

(expected number of edges inside the community)

$$Q = \frac{1}{2m} \sum_{a,b} (A_{a,b} - \frac{k_a k_b}{2m}) \delta(c_a, c_b)$$

M. E. J.-Newman, Michele-Girvan, "Finding and evaluating community structure in networks", Physical Review E, APS, Vol. 69, No. 2, p. 1-16, 204.

Sri Lanka is made up of 11 communities

How do communities match existing administrative divisions?

The 9 provinces

With some exceptions, boundaries of communities differ from existing administrative divisions

- Northern (1), Uva (10) and Southern (11) communities most similar to existing provincial boundaries; but 11 takes Embilipitiya and Kataragama
- Colombo district is clustered as a single community (7)
- Gampaha merges with coastal belt of North Western Province (2) and Kalutara (8) is its own community
 - What does this mean for Western Province Megapolis?
- Batticaloa & Ampara districts of the Eastern Province merge with the Polonnaruwa district of North Central Province to form its own distinct community (6)
 - Possibly reflective of economic linkages since this is the rice belt of Sri Lanka
 - Does economics override ethnicity?

More differences appear when we zoom in further

- The littoral regions form their own distinct subcommunities
- The northern part of Colombo city forms a community with Wattala, across the Kelani river
- In general, rivers no longer form natural boundaries of communities

- Understanding land use characteristics
- Measuring urban economic activity
- Understanding Sri Lankan communities
- Other interesting applications
- Analytical Challenges

Other ongoing research

- Modeling infectious disease propagation (Dengue) based on human mobility from CDR
- Measuring the impact of a transport shock (Opening the E03 expressway)
- Traffic analysis using CCTV footage
- Enhancing land use predictions with social media data (Eg. Foursquare) and satellite imagery
- Modeling interactions between different land
- Developing socio-economic indices and poverty mapping using CDR, satellite imagery, census data, etc.

- Understanding land use characteristics
- Measuring urban economic activity
- Understanding Sri Lankan communities
- Other interesting applications
- Analytical Challenges

Addressing analytical challenges

Challenge	Solution(s)
Data is biased towards frequent users	 Understand and adjust for selection bias
Data sparsity	Interpolation techniquesProbability based models
Different tower densities	 Different scale of analyses depending on region
Validating results	 Using other data sources, e.g., data from Dept. of Census and Statistics, transportation survey data

Selected Publications & Reports

- Lokanathan, S., Kreindler, G., de Silva, N. D., Miyauchi, Y., Dhananjaya, D., & Samarajiva, R. (forthcoming). Using Mobile Network Big Data for Informing Transportation and Urban Planning in Colombo. *Information Technologies & International Development*
- Samarajiva, R., Lokanathan, S., Madhawa, K., Kriendler, G., & Maldeniya, D. (2015). Big data to improve urban planning. *Economic and Political Weekly*, Vol L. No. 22, May 30
- Maldeniya, D., Lokanathan, S., & Kumarage, A. (2015). Origin-Destination matrix estimation for Sri Lanka using mobile network big data. 13th International Conference on Social Implications of Computers in Developing Countries. Colombo
- Kreindler, G. & Miyauchi, Y. (2015). Commuting and Productivity: Quantifying Urban Economic Activity using Cell Phone Data. LIRNEasia
- Lokanathan, S & Gunaratne, R. L. (2015). Mobile Network Big Data for Development: Demystifying the Uses and Challenges. *Communications & Strategies*.
- Lokanathan, S. (2014). The role of big data for ICT monitoring and for development. In *Measuring the Information Society 2014*. International Telecommunication Union.

More information:

http://lirneasia.net/projects/bd4d/

