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Agenda

1. Quick introduction of the CMU Auton Lab

2. Learning detectors of events manifested in multiple streams 
of data

3. Maintaining scalability of machine learning systems using 
cached sufficient statistics (example: T-Cube)

4. Demo: Real-Time Biosurveillance Project – pilot deployment 
of event detection system in Sri Lanka

Note: This agenda is meant to be flexible and can be 
adjusted on the fly…
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• The Auton Lab was founded in 1993 by Andrew Moore (now with 
Google)

• Central topic of research: scalable, self-adaptive analytic systems
with real life impact

• Currently: almost 20 people 
2 regular + 3 affiliated faculty, 1 post-doc, 6 programmers and analysts, 7 PhD 
students; plus a few interns; led by Artur Dubrawski and Jeff Schneider

• Currently working on ~10 sponsored projects 
Current and past funding from NSF, DARPA, DHS/HSARPA, ONR, AFRL, NASA, USDA, 
FDA, CDC, IDRC a few Fortune 100 companies, and a number smaller corporate & 
academic sponsors and partners

• Deliverables
– Algorithms for fast and scalable statistical machine learning
– Software for embedding in production systems
– Software available for download (currently 100+ new downloads per month)

www.autonlab.org

Auton Lab: Research and Applications

Slide 4 of 23                             Machine Learning in Support of Biomedical Security

Statistical Machine Learning

• Learning: improving performance at some task through experience

• Statistical Machine Learning: building probabilistic models from data
(and/or from human expertise) 

Predictive tasks
E.g. predicting threat level of a shipment based on the record of spectral and 
contextual information about a number of previously processed and evaluated 
shipments.

Descriptive tasks
E.g. explaining (in probabilistic terms) the kind and extent of relationships between 
data elements; also: how strange is the current shipment, given historical data.

• Auton Lab’s main contributions: 
9 Scalable versions of Machine Learning algorithms
9 New data structures which enable efficient implementations
9 Progress driven by practical applications & real-world deployments



Slide 5 of 23                             Machine Learning in Support of Biomedical Security

Slide 6 of 23                             Machine Learning in Support of Biomedical Security

We have built an early 
warning system for 

outbreaks of diseases 
(with U.Pitt.)...

February 5, 2002

Real-time Monitoring of Emergency Department 
Chief Complaints during 2002 Winter Olympics
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Rapid Detection of Emerging Patterns of Adverse Events

Why Do We Care?

Highly motivational example: Adverse bio-events

– Terrorist acts (Anthrax, Smallpox, ...)
• 100 kg of anthrax released in DC may kill 1—3 million people (WHO)

• “For the life of me, I cannot understand why terrorists have not attacked 
our food supply because it is so easy to do” (Resignation speech by departing 
U.S. Health Secretary Tommy Thompson, December 3, 2004)

– Naturally occurring events, including emerging threats 
(SARS, Avian Influenza, West Nile Virus, Mad Cow Disease, Foot-and-Mouth 
Disease, E.coli, Salmonella, ...)

• Lower-bound estimate of death toll of Avian Influenza pandemic:       
2—7 million lives

– Unintentionally introduced events                              
(such as accidental contamination of food at processing plant)

• Each year in the US: 76 million cases of food borne diseases    
(5,000+ of them fatal)
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Rapid Detection of Emerging Patterns of Adverse Events

Why Do We Care?

• A 2-day gain in detection time during an incident of inhalational 
Anthrax release could reduce fatalities by a factor of six (DARPA)

• Improvements of even an hour over current detection capabilities
could reduce economic impact of a bioterrorist anthrax attack by
hundreds of millions of dollars (Wagner et al. 2004)

• US agricultural industry: $1T of economic activity, $60B in food
exports, root cause identification is apparently very difficult: 82% of 
food-borne disease cases are of unknown origin.

How Machine Learning community can help: 
• Exploit available early signals 
• Build algorithms and supporting data structures for rapid detection
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Auton Lab’s algorithms and data structures for rapid detection of emerging
patterns

• What’s Strange About Recent Events (WSARE)
Monitoring Emergency Rooms chief complaints for unusually high counts of 
patients from specific sub-populations who report with similar symptoms 

• Fast Spatial Scan
– Expectation-based
– Multivariate Bayesian

Monitoring volumes of non-prescription drug sales and/or ER data for spatio-
temporal over-densities

• Multi-Stream Temporal Monitor
Combining evidence from multiple streams of time series for detection of 
anomalies and specific patterns of interest

• Tip Monitor
Monitoring food consumer complaints for small sets of similar reports which 
may be attributed to a common underlying cause

• T-Cube
In-memory data structure enabling huge speedups in time series extraction 
and aggregation

Slide 10 of 23                             Machine Learning in Support of Biomedical Security

• WSARE is designed to detect small clusters of illness in 
healthcare workers, age groups, workplaces...

• Israeli Center for Disease Control evaluated WSARE  
retrospectively using an unusual outbreak of influenza 
type B that occurred in an elementary school in central 
Israel. It detected the outbreak on the second day from 
its onset.

• Retrospective analysis of Walkerton case: alerted one
day ahead of the issuance of boil water advisory (at the 
expected rate of 2 false positives per year).

Evaluation
Detailed comparison on 2,000 simulated 
scenarios and Western PA ER Data

Method
• Search over 100,000s of subpopulations
• For each subpopulation, use as good of a model as 

can be created to predict expected counts
• The model will have a form of a multi-component rule, 

e.g.”There is a surprisingly large number of 
children with respiratory problems today”

• Compute p value, taking into account multiple testing

Date Time Hospital ICD9 Prodrome Gender Age Home 
Location

Many 
more…

6/1/03 9:12 1 781 Fever M 20s NE …

6/1/03 9:45 1 787 Diarrhea F 40s SE …

: : : : : : : : :

All 
Historical

Data
Today’s 

Cases
Today’s

Environment

What 
should be 
happening 

today?

What’s strange about 
today, considering its 

environment? And how 
significant is this?

Standard

WSARE2.0

WSARE2.
5

WSARE3.0

Representative Surveillance Data

Standard Approach

Select in advance which 
subpopulations to monitor 
(e.g., each county, zip)

Do not pay close attention 
to effect of multiple 
testing

WSARE Approach

Monitor hundreds of 
thousands of 
subpopulations

Pay close attention to 
effect of multiple 
testing

Significance

What’s Strange About Recent Events (Wong’s Ph.D. thesis, 2003)



Slide 11 of 23                             Machine Learning in Support of Biomedical Security

Evaluation
• Current version typically turns multi-day 

analysis into <20 minutes for daily counts 
from over 20,000 drugstores nationwide

• Searches all rectangular regions.
• Results are exact (not approximations).

Method (Expectation-Based Variant of FSS)

Algorithm Search space # of regions Search time Time / region Likelihood ratio 

SaTScan Circles centered at datapoints 150 billion 16 hours 400 ns 413.56

exhaustive Axis-aligned rectangles 1.1 trillion 45 days 3600 ns 429.85

FSS (2006) Axis-aligned rectangles 1.1 trillion 81 minutes 4.4 ns 429.85

ER dataset (600,000 records), 1000 replicas; for SaTScan: M=17,000 distinct spatial locations; for exhaustive/fast: 256 x 256 grid.

Significance
• Traditional spatial scan is very expensive, especially 

with randomization tests of significance
• A few hours difference may actually matter.
• Retrospective analysis of Walkerton case: alerted two

days ahead of the issuance of boil water advisory. 

Fast Spatial Scan (Neill’s Ph.D. thesis, 2006)

•This increase could be due to an outbreak, 
or due to chance.

•Which regions of increase are significant?
•Search all rectangular regions on the grid.

•Solution: We learn the expected count for each area 
from historical data.

•Then we find regions where the recent counts are 
significantly higher than expected, accounting 
for anticipated spatial and temporal variations

Time series of counts for each 
zip code (at least 3 months of 
historical data).

Multivariate Bayesian variant of this 
method analyzes multiple streams of data to 
maximize detection power while enabling 
disambiguation among possible causes of 
outbreaks

OTC drug sales
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Safety of Food Supply and Agriculture

Farm Fork

Import

CCMS II
(USDA)

CZDSS
(USDA)

RBI 
PHIS

(USDA)

eLEXNET
(FDA)

Consumer ComplaintsMultiple Streams
(condemnations, lab tests,

inspection results, recalls, …)

Slaughterhouses
(condemnations & results 
of lab tests for pathogens,

residues and microbes 
causing zoonotic diseases)

Food Sample Test Results
(microbes, toxins)

Common denominator of these multiple 
projects: To quickly detect emerging 
patterns and rank them according to the 
expected risk, so that investigative 
resources can be allocated efficiently
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The Need for Multivariate/Multi-stream Detectors

Different streams of data or different dimensions of the same 
data stream often carry corroborating evidence about the 
events of interest

It may be beneficial to analyze them jointly in order to:
• Increase accuracy of detection
• Decrease latency of detection
• Improve specificity of detection

Examples:
Syndromic bio-surveillance: 

• Multi-stream: Over-The-Counter medicine sales vs. Records of patients reporting to 
hospitals vs. School absenteeism vs. Lab test requests vs. Many other measurable 
factors

• Multi-variate: Different categories of OTC drugs; Different symptoms of ER patients

Attribution and predictive analytics in public health: 
• Multi-stream: Microbial isolates from humans vs. Results of microbial testing of food 

samples taken at food factories
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Multi-stream Detection (1)

If
• A strong model of informative relationships between the multiple

variables (multiple data streams) is available, and
• Streams have coherent statistical properties

Æ build joint multivariate models

This approach is a very appealing standard, but it requires 
understanding of the structure of relationships and a sufficient
amount of evidence in data for reliable estimation of the joint model
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Multi-stream Detection (2)

Else, if
• Streams can be treated as independent of each other

Æ build a set of univariate detectors and raise an 
alert whenever one of them gets off
This ignores a potentially useful interplay between streams, if it exists

And it requires attention to the effects of multiple testing

For m streams and expected per-stream false alarm rate α,
probability of at least one stream causing an alert is [1 - (1 - α)m]

Popular remedy: decrease sensitivity α (e.g. Bonferroni, FDR methods),  
but that adversely impacts timeliness of detection 
And in fact, power of the aggregate detector remains unchanged: we only trade 
trimming down the frequency of alerts for greater latency 

Interestingly, triggering an alert based simply on the strongest signal from an 
individual detector (e.g. the lowest p-value, so called Min aggregate) leads to an 
equivalent detection power 
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Multi-stream Detection (3)

A plausible alternative, if
• We do not have a strong prior understanding of between-stream 

relationships, but we do believe in that they exist
• And we do not have ample data to learn a joint model

Æ use Consensus Approach to aggregate the output 
of univariate detectors

P-value aggregation, e.g.:
Fisher’s [Fisher, 1948]
Edgington’s [Edgington, 1972]

Heuristic/hybrid approaches, e.g.:
Majority voting [Yadav et al., 2007]
Filtering alerts [Roure et al., 2007]
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Fisher’s Method of P-value Aggregation

Under null hypothesis, p-values are distributed uniformly, and Fisher’s 
statistic for m independent p-values (2Σlnpi) has a chi-square distribution 
with 2m d.o.f.  In fact, there exists a closed-form solution for the combined 
p-value [Jost]: 
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Example:
2 streams with
independent 
univariate detectors

Null hypothesis 
rejection region for 

Min criterion with 
α=0.05

Fisher’s aggregation 
leads to rejecting null 
hypothesis also if both 
component p-values are 
just slightly greater than 
critical

It is more conservative 
than Min approach 
when either of the 
components is much 
greater than critical
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Example Application: 
Detection of Events in Multi-stream Food/Agriculture Safety Data

The U.S. Department of Agriculture (USDA) collects data from different 
sources, including:

Stream A: Daily counts of healthy and condemned cattle arriving at 
slaughterhouses 

Stream B: Daily counts of positive and negative results of microbial tests of 
meat products

Stream C: Daily counts of passed and failed sanitary inspections of 
slaughterhouses

USDA analysts are interested in monitoring these streams of data for 
unexpected, temporally coinciding increases in positive counts in all data 
or in specific, e.g. geographically co-located, subsets of it
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Single Stream Detector Used in the Example Application:
Temporal Scan
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For given time step e.g. today:
1. Establish time window of 

interest ending at the current 
day and starting T-1 days 
before

2. Compute sums of target counts 
and sums of baseline counts 
inside and outside of the 
window (or during otherwise 
defined period of reference)

3. Put the results in a 2-by-2 table 
and execute Fisher’s exact or 
Chi-square test of significance

4. Report the resulting p-value.

For instance, the series shown in 
the graph would return on June 
29th 2005 (with T=28 days):
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target counts (e.g. daily counts of positive results of microbial tests for Salmonella)

baseline counts (e.g. daily counts of negative results of tests for Salmonella)

current time window

target baseline total
within 23 95 118

outside 847 11,550 12,397
total 870 11,645 12,515

p-value 7.39E-08
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Example Application: 
Design of Experiment

• We did not have the access to known events of interest labeled in 
historical data

• Therefore, we set up the experiment by augmenting the positive counts in 
actual streams by multiplying them with a factor of varying value over the 
period of synthetic outbreak:

• We created 100 copies of the 3 streams of positive counts and in each of 
them we injected 1 outbreak at a random date (the same date for each of 
the streams)

• The value of Δ was individually selected for each of the streams such that 
the injected outbreaks were not immediately detectable on their onset

time (days)

value of the multiplying factor

140 7

1.0

Δ
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Applying Fisher’s Aggregation

Power of detectors can be conveniently evaluated using Activity Monitoring 
Operating Characteristic (AMOC) graphs:
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The aggregate detector is substantially more 
powerful than any of the individual components

This figure presents 
characteristics 
obtained for  uni-
variate detectors 
applied to the 
individual streams 
A, B and C, as well 
as AMOC of their 
Fisher’s aggregate 
(labeled F)

Each point in the 
graph corresponds 
to one setting of 
sensitivity of a 
detector (i.e. the 
significance 
threshold α)

It corresponds to 
the mean latency 
and the mean 
number of 
additional 
detections 
computed from 100 
independent tests

The error bars 
depict standard 
errors in these 
means

Slide 22 of 23                             Machine Learning in Support of Biomedical Security

• That is very nice
But, Fisher’s method produces a non-specific detector
It treats all the components equally in targeting departures from the joint 
NULL distribution

• That is quite useful if we are after general anomaly detection and therefore 
we do not care about specific events with particular characteristics

• If we do, it may be possible to tweak Fisher’s method to produce a more 
powerful, specific detector

• Manual design of specific detectors can be subjective and tedious though

• If we have data with labeled events of interest and labeled periods without 
them, we could use it to automatically train classifiers of events

Non-specific vs. Specific Detectors & Learning Them
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How Would That Work?

Consensual
Aggregation

using e.g. 
Fisher’s method

Event-Type-Specific Filter 
(Learned from Data)

D
o 

N
ot

hi
ng

Signal
Alarm

No Alert

Alert

Pass

Reject
A learned from data 
filter of irrelevant alerts
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How Would That Work?

Consensual
Aggregation

using e.g. 
Fisher’s method

Event-Type-Specific Filter 
(Learned from Data)

D
o 

N
ot

hi
ng

Signal
Alarm

No Alert

Alert

Pass

Reject

We can learn from data 
filters of irrelevant 
alerts:

Æ Using a set of 
positive (outbreaks) 
and negative examples 
(normal data)

Æ Using only negative 
(no-event) examples

Æ Or using negative 
examples with 
whatever small number 
of positive examples 
we may have

ÆWe can also train 
filters that tell apart 
different types of 
events
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Experiment: 
Learning Classifiers as Multivariate Event Detectors

• We independently created 100 synthetic data sets with injected outbreaks for 
training, and another 100 for testing

• Output space: Data belonging to the period of outbreak were labeled as positive 
and data for the 14 days after the outbreak as negative examples

• Input feature space: a Cartesian product of the following sets:
• 4 p-values: 3 computed using temporal scan independently for each 

component stream; and 1 Fisher’s aggregate
• 3 widths of temporal scan window: 1, 2, and 3 days
• 3 days of data: the day of analysis and the two preceding days
That makes 36 numeric features per data point (one day)

• We used a Random Forest classifier [Breiman 2001] 
• Each forest made of 40 decision trees, each tree trained on a different 

bootstrap sample of the training data
• The percentage of classifiers predicting positive used as the output value
• 10 forests, each built with a different random seed of the bootstrap sample
• Prediction deemed positive if the average prediction of 10 forests exceeds a 

pre-set threshold
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Number of additional detections outside of the periods of known outbreaks
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This graph compares AMOC curves for Fisher’s aggregate (F), Fisher’s 
based hand-crafted detector (F+) and the classifier-based detector (L)
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Learning Specific Detectors from Labeled Data

Specific multivariate detector learned from data outperforms the manually designed 
one as well as the non-specific detector based on Fisher’s aggregate
Its characteristic was obtained by varying the value of the prediction threshold
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Challenges of Learning Detectors from Data

• The news from the previous slide is VERY GOOD!

• BUT, how often do we get to see hundreds of available and 
documented adverse health-related events of the same kind 
recorded in data? 

• In many practical scenarios experts cannot easily identify 
many examples of outbreaks…
(that is NOT very good news for our learning filters)

• However, often experts can easily provide examples of days 
when no special events have occurred
And, we can learn useful detectors using primarily such 
negative examples ☺
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Number of additional detections outside of the periods of known outbreaks
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This graph compares performance of detectors learned from only negative examples 
(F+FP), negative and just one labeled positive case (F+TP1) and negatives plus 10 
positives (F+TP10), against that of previously discussed models (F, F+, L)

Detectors trained to filter out false-positives do better than either plain or specific
Fisher’s models, but they are outperformed by the detector trained using a large 
sample of positive examples
The more the positive examples at hand, the better the attained performance
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Learning Detectors 
Using Limited Number of Labeled Outbreaks

Filter trained on 
negative-only 
examples used 
Gaussian Kernel 
Density Estimator

These examples 
were taken from 
data labeled as 
negative by the 
Fisher’s 
aggregation 
model

Filters trained on 
negative and few 
positive 
examples use 
separate 
Gaussian Kernel 
Density models 
for the two 
classes of 
examples, linked 
via Bayes’ rule
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Multi-stream Event Detection: Lessons Learned

1. Aggregation of complementary evidence from multiple streams of data 
allows for increased detection power

2. Event-type-specific detectors can further reduce the number of false 
detections, which allows for increased sensitivity of detection

3. Hand-crafting them may be tedious and subjective

4. Learning specific detectors from data is a good alternative

5. They can be automatically learned even if the amount of training data is 
very limited:
• Only from negative examples
• From negative and just a few available positive examples
• The more labeled examples the better the attainable performance of trained 

detectors

6. Learning makes an appealing method of design; It has a potential to 
reduce costs of development and maintenance of future detection systems
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• Old School: 
– Static database reports processed in a batch mode

• Modern: 
– Data Warehousing, interactive access to data from the analyst’s desktop
– Business Intelligence portals with pre-formatted, automatically updated reports
– Efficiency relies on Data Cubes

• Data Cubes store pre-computed answers to most likely queries
• Not that useful when dealing with arbitrary queries

• Crazy idea behind Cached Sufficient Statistics:
– Let’s store answers to all conceivable queries!

• That should minimize the user-perceived response time
• And, it would enable unconstrained, massive scale data mining

Scalability: Data Access via Cached Sufficient Statistics

Data UsersCache
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Mining categorical data is quite often all about counting (co-)occurrences:
• Association rule learning, Decision trees, Bayesian networks, …
• E[ P(ArrackDrinker|SriLankan) ] = 

= NumberOf(SriLankan ArrackDrinker)/NumberOf(SriLankan)
It needs to be done in multi-variate data spaces

Standard approach: a Contingency Table (a Data Cube of counts)

Example: Mining Categorical Data
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Mining categorical data is quite often all about counting (co-)occurrences:
• Association rule learning, Decision trees, Bayesian networks, …
• E[ P(ArrackDrinker|SriLankan) ] = 

= NumberOf(SriLankan ArrackDrinker)/NumberOf(SriLankan)
It needs to be done in multi-variate data spaces

Standard approach: a Contingency Table (a Data Cube of counts)
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Example: Mining Categorical Data

SriLankan? ArrackDrinker? CricketFan?
1 0 1
0 1 0
0 1 1
0 0 1
1 1 1
0 1 1
1 1 1

Contingency
table
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=1
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Mining categorical data is quite often all about counting (co-)occurrences:
• Association rule learning, Decision trees, Bayesian networks, …
• E[ P(ArrackDrinker|SriLankan) ] = 

= NumberOf(SriLankan ArrackDrinker)/NumberOf(SriLankan)
It needs to be done in multi-variate data spaces

Standard approach: a Contingency Table (a form of Data Cube)

Complaint:
• Contingency Tables can reach enormous sizes (numbers of cells) if the 

underlying data is highly dimensional and if the involved variables have 
high arities (i.e. they can assume many different values)
That may (and it often does) kill the purpose

Is there a better way?
Yes! Use AD-Trees (All-Dimensional Trees) [Moore & Lee 1998]

Example: Mining Categorical Data
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Example: Fully Developed AD-Tree for a 2-D Dataset

Data

“Count” nodes store queries 
and the corresponding counts 
of the records of data matching 
them

“Vary” nodes contain queries in which
specific attributes are instantiated
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Take advantage of sparseness and 
redundancies: do not store anything with zero 
counts and do not store sub-trees of Most 
Common Values

NULL

A1=*
A2=*

C=8

A1=1
A2=*

C=1

A1=2
A2=*

C=3

A1=*
A2=1

C=3

Vary A1
Vary A2

Vary A2 Vary A2

A1=2
A2=2

C=1

mcv->3

mcv->2 mcv->1

mcv->2

NULL NULL

NULL NULL

(mcv) (mcv)

(mcv) (mcv)

AD-Tree: A Smarter Version

A1 A2
1 2
2 1
2 1
2 2
3 1
3 2
3 2
3 2

Data

This tree takes much less memory and we still can cheaply 
compute all the removed pre-computed counts! 

Slide 36 of 23                             Machine Learning in Support of Biomedical Security

Practical Benefits of AD-Trees and Other Cached 
Sufficient Statistics Structures

Dramatic speedups of data access time with respect to other, previously 
considered efficient, methods:

• AD-Trees: 1-4 orders of magnitude savings in processing time required 
by computationally intensive data mining processes (attainable if the data 
is at least partially correlated)
Example: 1,580,000 Galaxies, 27 binary attributes per galaxy, time to build AD-Tree: 4 
minutes, tree memory: 2 Megs, time required to execute 50,000 iterations of Bayesian 
network structure search: less than 2 minutes (previously 1.3 days)

• Kd-Trees: useful to represent multivariate continuous data up to ~8-D 
– Gaussian mixture density modeling and clustering: Speedups of 8 to 1000 times vs. an 

efficient, but not kd-tree based implementation [Moore 1999]
– K-means clustering: Speedups of 150+ times on real-world astrophysical data [Pelleg & 

Moore 1999]
– Non-parametric multi-resolution regression: Speedups of 3—100 times [Deng & Moore 

1995]
– Spatial Scan Statistic: 50 times speedups in analyzing nationwide OTC pharmacy sales 

[Neill 2006]

• Metric Trees: useful to represent highly multivariate continuous data
– Mining data up to 10,000 (yes! ten thousand!) dimensions reveals 2.5 to 2,000-fold 

speedups w.r.t. otherwise efficient classical approaches to k-means clustering, grouping 
attributes and non-parametric anomaly detection [Moore 2000].
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T-Cube: Extending AD-Trees to Represent Time Series

If we have a  set of additive time series (e.g. 
series of counts of events) annotated with 
some categorical descriptor variables…
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• Commercial data cube tools evaluated: 
– TimesTen (Oracle), 
– ANTS Data Server (ANTs Software), 
– extremeDB (McObject), 
– TimeSeries DataBlade (IBM, designed for time series).

All tested on 12 million transactional records of synthetic 
data with 3 attributes (arities of 1,000; 10 and 5); on a 
Windows XP machine with 2GB RAM and 2.4GHz CPU.

T-Cube: Evaluation in a Controlled Environment  (as of 2007)

Memory Complex Query 
Response Time

Tool 1 330 MB 6.8s

Tool 2 231 MB 7.6s

Tool 3 1+ GB 3.5s

T-Cube 236 MB 22ms

T-Cube 845 MB 5ms

Date Gender Place Complaint Count
1/1/2006 M 100 GI 4
1/1/2006 M 300 Resp 3
1/1/2006 F 300 Fever 11
1/1/2006 M 200 Resp 3
1/1/2006 F 400 Fever 2
1/2/2006 M 200 GI 1
1/2/2006 F 400 GI 4
1/2/2006 M 300 Resp 2
1/2/2006 F 300 Fever 5
1/2/2006 M 200 GI 6
1/3/2006 M 200 GI 2
1/3/2006 F 300 Resp 1
1/3/2006 M 100 Fever 4
1/3/2006 F 300 GI 2
1/3/2006 F 400 GI 3

Format of an example data set
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Summary: So, How Efficient Representation of Data Can 
Support Biomedical Security?

1. By enabling automated exhaustive searches for events of 
interest through large collections of data
• Exhaustive search guarantees that important patterns are never missed
• Efficient representation of data enables exhaustive search where it was 

never considered feasible

2. By enabling interactive, ad-hoc, drill-down investigations 
• Quick response times to ad-hoc queries make it possible to 

interactively navigate data for clues or for confirmations of the 
automatic detections

3. By enabling automated explanation of detected patterns
• Fast access to data also supports answering follow-up questions such 

as “What aspects contribute the most to the observed patterns?”
• Also, some previously prohibitively expensive but helpful statistical 

tests become feasible.
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Demo 

Application of T-Cube Web Interface 

in the Real-Time Bio-surveillance Project 

being deployed in 

Sri Lanka and Tamil Nadu 
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• We do a lot of fundamental and applied research
– Clever data structures
– Smart, computationally efficient and numerically accurate 

algorithms
– Striving for Practical Autonomy
– Complementing evidence available in data with human expertise
– Our research is motivated by the actual needs of the end users

• Today, the data available to analysts is too great for them to 
internalize

• In 10-20 years, the complexity of the concepts will be too great 
to internalize

• At the same time, the nature and types of objectives will be 
changing too quickly to permit off-line analyses

• Efficient (computationally and statistically) machine learning 
will make the timely and accurate analyses feasible.

What’s Behind and What’s Ahead
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