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The recent emergence of dengue viruses into new susceptible
human populations throughout Asia and the Middle East, driven in
part by human travel on both local and global scales, represents a
significant global health risk, particularly in areas with changing
climatic suitability for the mosquito vector. In Pakistan, dengue
has been endemic for decades in the southern port city of Karachi,
but large epidemics in the northeast have emerged only since
2011. Pakistan is therefore representative of many countries on
the verge of countrywide endemic dengue transmission, where
prevention, surveillance, and preparedness are key priorities in
previously dengue-free regions. We analyze spatially explicit
dengue case data from a large outbreak in Pakistan in 2013 and
compare the dynamics of the epidemic to an epidemiological
model of dengue virus transmission based on climate and mobility
data from ∼40 million mobile phone subscribers. We find that
mobile phone-based mobility estimates predict the geographic
spread and timing of epidemics in both recently epidemic and
emerging locations. We combine transmission suitability maps
with estimates of seasonal dengue virus importation to generate
fine-scale dynamic risk maps with direct application to dengue
containment and epidemic preparedness.

dengue | human mobility | Pakistan | mobile phones | epidemiology

Dengue is the most rapidly spreading mosquito-borne disease
worldwide (1, 2). Half the global population now lives in at-

risk regions for dengue virus transmission, due to the wide dis-
tribution of the mosquito vector, Aedes aegypti, which thrives in
peri-urban areas and transmits the virus between humans (3).
Dengue virus can cause acute febrile illness and carries the risk
of severe disease, hospitalization, and shock syndrome, especially
in clinical settings with little experience treating dengue patients.
There is currently no specific therapeutic protocol for, or vaccine
against, infection (1). Current control measures focus on vector
control, although these measures are often logistically difficult
and have shown varying efficacy in controlling epidemics (4). In
the absence of effective prevention and treatment, public health
system preparedness remains the single most important tool for
minimizing morbidity and mortality as dengue epidemics spread
beyond endemic areas (5, 6).
The introduction of dengue into new populations is mediated

by travel of infected individuals to areas that can support trans-
mission, because mosquito vectors move only short distances
during their lifespans (3, 7–12). International travel to endemic
countries has resulted in imported cases and outbreaks in Europe
and the Americas (2, 8, 10, 13). Local variation in transmission,
within a single city for example, is also driven by mobility patterns
of individuals on short timescales (7). Forecasting methods are
needed to spatially target interventions and epidemic prepared-
ness measures that reflect both the changing temporal risks of
importation and environmental suitability that go beyond solely
climate-based methods (14).

Dengue has long been endemic in most Southeast Asian coun-
tries (1), but has more recently emerged in parts of the Middle East
and South Asia, including Pakistan (15, 16). In Pakistan, the
transmission of dengue viruses was largely confined to the southern
city of Karachi until 2011 when a large dengue epidemic with over
20,000 cases occurred in the northeastern city of Lahore (16),
causing significant morbidity and mortality. In 2013, a second
large epidemic occurred in northeastern Pakistan in Punjab and
Khyber-Pakhtunkhwa (KP) provinces, establishing the region as
an emerging focus of seasonal dengue epidemics. It has been
hypothesized that the recent geographic expansion of A. aegypti
mosquito vectors, changing environmental suitability, and human
importation of dengue from endemic regions all contributed to
the emergence of dengue in northern areas (17). Pakistan is
therefore representative of many countries that are on the verge
of countrywide endemic dengue transmission and are struggling
to contain its emergence into previously dengue-free regions.
Measuring changing risks of importation events that spark

epidemics has been extremely challenging on the refined tem-
poral and spatial scales necessary to inform local policies (18).
Being able to predict when to prepare surveillance systems and
health facilities for dengue outbreaks could dramatically reduce
the morbidity and mortality associated with epidemics and would
allow policy makers to pinpoint regions that are particularly
vulnerable to imported cases, for vector control. Mobile phone
data offer direct measures of human aggregation and movement
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and represent a unique source of information on the human
determinants of the geographic expansion of emerging epidemic
diseases like dengue. Here, we conduct a retrospective epide-
miological analysis of large dengue outbreaks in Pakistan in
2013, to examine the predictive ability of an epidemiological
model that integrates human mobility from the largest mobile
phone dataset analyzed to date with climate information. We
show that within-country human mobility predicts emerging ep-
idemics in Pakistan, and epidemiological models incorporating
this type of data can predict the spatial extent and timing of
outbreaks, providing a new approach to forecasting.

Results
Human Mobility in Pakistan Does Not Conform to Standard Model
Predictions. To measure human travel patterns underlying the
spread of dengue virus across Pakistan in 2013, we estimated the
mobility of 39,785,786 mobile phone subscribers between geo-
located mobile phone towers in Pakistan between June 1 and
December 31 of 2013 (representing ∼22% of the population;
Materials and Methods). Daily locations and movements were
aggregated to measure travel between 356 small, politically de-
fined areas called tehsils (Fig. 1A and Materials and Methods).
We compared our data to gravity models of mobility, developed
from transportation theory and commonly used to parameterize
infectious disease frameworks, to assess whether observed mo-
bility measured using mobile phone data significantly improves
upon this standard approach. We have focused on intracountry
mobility patterns (Discussion).
The sampled population was extremely mobile. We estimated

that between 2.4 million and 4.8 million subscribers traveled
between tehsils each day (95% quantile interval: 3.1–4.6 million;
details inMaterials and Methods). Most travel followed a NW–SE
corridor along the major highways (Fig. 1B). Large volumes of
travel occurred to and from Karachi, a major population and
economic hub of Pakistan, with ∼710,000 subscribers traveling to
or from the city each day on average (95% quantile interval:
570,000–813,000; Fig. S1). In contrast to expectations of stan-
dard mobility models, there was almost no decay in travel with
increasing distance (correlation coefficient: −0.064, P < 0.001),
although the most frequent destinations for travel were often in a
nearby tehsil (Fig. 1C). This pattern reflects the topography,
road infrastructure, and population distribution in Pakistan, with
the largest cities outside Karachi being located in the northern
part of Punjab province that includes the Rawalpindi/Islamabad
metropolitan area, Lahore, and Faisalabad. Although there was

a decrease in overall movement during Ramadan, we did not
observe a systematic difference in the amount or direction of travel
patterns in the weeks before and after the holiday (Fig. S1).

Epidemiological Modeling of Dengue Epidemics in 2013. There were
15,535 reported dengue cases in 82 tehsils over 7 mo in Pakistan
in 2013 (Fig. 2A and Materials and Methods). Peak timing of the
epidemic varied by location, and the majority of cases occurred
in and around Karachi, in the northern district of Swat, and in
the cities of Lahore and Rawalpindi (Fig. 2A and Table S1).
About half of the dengue cases reported occurred in the Mingora
area of Swat (KP province), marking the first major outbreak in
the region [n = 7,950, compared with a previous maximum of 300
cases reported in KP in 2011 (16)].
We first fitted an ento-epidemiological model to the reported

dengue cases in Southern Pakistan, where transmission occurs
year round, and to case data in Lahore and Swat in northern
Pakistan, where transmission is seasonal due to climatic variation.
Southern Pakistan has year-round climatic suitability for dengue
vectors and is therefore the most likely source of exported cases to
other parts of the country, where greater seasonal temperature
extremes limit suitability (16) (SI Text). Although importation from
international regions is technically a possibility, given the fairly re-
strictive political borders we assume here that importation will be
negligible compared with the within-country importation rate. We
fitted an ento-epidemiological model of dengue dynamics in Kar-
achi (Fig. 2B), with vector dynamics being determined by temper-
ature (19). We fitted the mosquito-biting rate (a= 0.66) and
reporting rate (SI Text), yielding parameter values that are consis-
tent with endemic dengue virus transmission (Materials and Methods
and SI Text).
In northern Pakistan, we used our epidemiological framework

to estimate the timing of the introduction of the first case that
sparked the epidemics in each area, to compare these estimates
with our mechanistic model of imported infections using mobile
phone data. We performed a sensitivity analysis to estimate an
expected range of dates for the introduction of dengue to Lahore
and Mingora, where most cases were concentrated (Materials
and Methods and Fig. 3 A and B). Interestingly, Lahore had
suffered its first major outbreak 2 y before this epidemic, and we
expect that immunity may have played a significant role in de-
termining transmission dynamics (16). Mingora, on the other
hand, represents an effectively naive population. In the absence
of serotype information, we took the simplest approach and as-
sumed each population was immunologically naive; however, we
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Fig. 1. Human mobility dynamics in Pakistan. (A) Population density (red, high density; yellow, low density) and mobile phone tower coverage from the
mobile phone operator in Pakistan (colored in gray) per tehsil. (B) The top routes of travel between pairs of tehsils in Pakistan. A line is drawn if at least 20,000
trips occurred between the origin and destination between June and December 2013. The top routes occur between Karachi and cities in northern Punjab
province, particularly Lahore tehsil. (C) Relative direction and volume of travel. For each trip, we calculated the distance traveled from the origin and the
destination. The origin location was centered at 0,0 and the longitude distance and latitude distance to the destination are shown. Although many trips
occurred over short distances, a substantial amount of travel occurred between the southeastern and northern parts of the country, reflecting the geography
and population distribution of Pakistan.
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hypothesize that the delay between the first cases and the peak of
the epidemic in Lahore may have been caused by immunity from
the 2011 outbreak. We estimated that the first case was in-
troduced to Lahore during the second week of May (between
days 124 and 130; SI Text and Fig. 3A) a few days earlier than the
first reported case (day 133). In Mingora, on the other hand, we
estimated that the first introductions likely occurred in August
(between days 202 and 231) (Fig. 3B), a few weeks before the
first reported case in the city.

Models of Dengue Virus Importation Based on Mobile Phone Data
Accurately Predict the Spatial Extent and Timing of Epidemics. We
next modeled the number of infected individuals traveling from
the endemic areas in southern Pakistan to all other tehsils, using
different approaches to characterize mobility: direct observations
from the mobile phone data and various modified gravity models
of travel (Materials and Methods) (10, 19). To compare the
performance of the mobile phone data against the next best al-
ternative, we used a parameter-free gravity model (referred to as
the diffusion model) that is equivalent to a population-weighted
spatial diffusion model (Materials and Methods) based on the
travel time distance between the origin and the destination. In
addition to these models, we fitted a gravity model to the mobile
phone data, to determine whether simple adjustments would
significantly improve our predictions (SI Text and Fig. S2).
We compared the timing of predicted importation events from

endemic areas in southern Pakistan, based on our mobility
model, to the estimated first dengue case inferred from case
report data from Lahore and Mingora (SI Text). The timing of
the first dengue case estimated from the epidemiological data
overlapped well with the predicted introductions from southern
Pakistan to Lahore from the importation model (Fig. 3A), with
the first introductions occurring approximately 1 mo earlier. In
Mingora, the predicted timing of imported infections using our
model occurred 2 wk before the first reported case, consistent
with the serial interval for dengue and the estimates of the first

case from epidemiological data (Fig. 3B). Crucially, the diffusion
model does not predict any introductions from endemic areas in
southern Pakistan to Mingora. Thus, travel patterns measured
using mobile phone data predict introduction events consis-
tent with outbreaks in both emerging (Lahore) and previously
dengue-free (Mingora) regions. Our ability to measure these im-
portations in more remote places like Mingora was somewhat
sensitive to the Karachi model fit, in particular the reporting
rate, although the mobile phone data are always able to predict
earlier, more frequent, and more accurate introductions than the
diffusion model (SI Text). The modeled interaction between
seasonal variations in vectorial capacity and the dynamics of
importation events provide accurate predictions about the lo-
cation and timing of epidemics in different epidemiological set-
tings and regions of the country.
We combined our estimates of imported cases with an index of

climatic suitability for dengue vectors (19) across Pakistan to pre-
dict the potential for spread of the virus in areas with introduced
cases and assessed how well the spatiotemporal dynamics of the
epidemic were captured. In general, the spatial extent and epi-
demic timing of cases were predicted more accurately using mobile
phone data (Fig. 4) compared with the diffusion models, which
both predicted early spread along the major highway connecting
Karachi to other highly populated areas.

A New Approach to Dynamic Risk Mapping for Epidemic Preparedness.
We next constructed risk maps to identify areas of the country that
were vulnerable to epidemics due to a combination of seasonally
varying climatic suitability based on temperature and relative
humidity (vectorial capacity index) for dengue transmission and
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Fig. 2. Dengue epidemiology in Pakistan in 2013. (A) The location of den-
gue cases throughout Pakistan and the number of cases per week by tehsil.
Tehsils that reported at least 15 cases are shown on the map with corre-
sponding color shown in the time series. The majority of cases were reported
in Karachi (gray), Lahore (blue), and Mingora (orange). The dengue season
in the entire country lasted 35 wk, with the first reported case in Karachi
during week 18 (end of April). (B) The reported cases (red), temperature
(blue), and model fit (black) for Karachi are shown. Using the case and
temperature data, the human and vector population dynamics were mod-
eled (Materials and Methods).
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Fig. 3. Mobility estimates derived from mobile phone data predict the
timing of introduced cases around the country that spark epidemics. (A and
B) The estimated introduced cases from Karachi to (A) Lahore (total dengue
cases: 1,538) and (B) Mingora (total dengue cases: 4,029). The estimated
introductions (assuming 30% of individuals travel, a 2% reporting rate, and
a probability of 0.01) from the mobile phone data (boxplot in blue), the
diffusion model (boxplot in green), actual case data (red), and estimated
dengue suitability (gray) are shown. Dengue suitability was defined based
on temperature and relative humidity, using a measure that is linearly
proportional to vectoral capacity (Materials and Methods). Values near zero
are unsuitable for dengue transmission. For Lahore and Mingora, the esti-
mated introduction from the case data alone is shown (red cross-hatched
box). In all instances, the mobile phone data were able to predict the timing
of the first introduced case in each tehsil. An arrow indicates the week of the
first reported case in each tehsil.
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seasonal patterns of importation of dengue virus from southern
Pakistan. By combining the daily suitability index (Fig. 5A) with
estimated introductions of infected travelers from endemic areas
we created a composite epidemic risk measure that varied in
space and time and showed a distinctively different pattern of
risk than a climate-based suitability map alone (Fig. 5B). In
southern Pakistan outside of Karachi, for example, a low risk of
epidemic dengue results from low numbers of infected travelers
visiting the area. Along the Afghanistan border, on the other
hand, low risk of epidemics is due to temperature extremes that
prevent continuous dengue transmission. The highest-risk re-
gions are in Punjab and KP provinces in the northeast of the
country, where a combination of frequent introductions from
Karachi and long periods of sustained climatic suitability for
transmission create the necessary conditions for outbreaks.
The timing of epidemic risk varied considerably in different

tehsils (Fig. 5C), with the risk of outbreaks varying by up to 4 mo
in different regions. Based on the mobile phone data, epidemic
risk occurred much earlier in tehsils in northern regions rela-
tively far from Karachi, in contrast to the diffusion model. Be-
cause preparation of local health facilities and surveillance for
dengue cases are key components of national response to out-
breaks, this variation in timing has important implications for
decision making. In particular, given the 2-wk serial interval of
dengue (20), mobile phone and disease surveillance data could
be used to produce dynamic risk maps and provide location-
specific predictions about future risk of epidemics in near real
time, giving policy makers time to prepare.

Discussion
For emerging epidemic diseases like dengue, changing environ-
ments and dynamic population movements create conditions for
geographic expansion of pathogens into naive populations. Pre-
dicting the changing patterns of risk due to these emerging public
health threats will be critical to containing their spread and
preparing for outbreaks. Mobile phone data provide dynamic
population mobility estimates that can be combined with in-
fectious disease surveillance data and seasonally varying envi-
ronmental data to map these changing patterns of vulnerability
in a country where dengue outbreaks are emerging and irregular
in many regions. Because these data are continuously being
collected by mobile phone operators, these methods could be
integrated into national control programs in near real time.
A major limitation of mobile phone data generated by na-

tional operators is the difficulty in capturing cross-border travel
patterns. International travel may be less relevant for dengue

dynamics in Pakistan than in other dengue-endemic countries,
however. Less than 2% of the entire Pakistan population are
migrants (where their country of origin is not Pakistan) (21).
More than half of these migrants are from Afghanistan (2.3
million) (21). Although Pakistan borders four countries (India,
Afghanistan, China, and Iran), all aside from India are not en-
demic for dengue near the Pakistan borders, making importa-
tions of dengue cases to Pakistan unlikely (3, 22–24). Estimates
of travel between India and Pakistan are difficult to obtain, but
travel restrictions between the countries and a limited number of
international flights may make travel difficult. Another potential
issue with this type of data is the sampling frame, because mobile
phone ownership may not represent a representative sample of
the population, although we have previously found in an African
context that mobility estimates from this kind of data were not
significantly affected by ownership bias (25). We expect that the
substantial market share and widespread coverage of the mobile
phone operator make the possibility of systematic skew in our
estimates unlikely, but this cannot be ruled out.
Uncertainties are inherent to any epidemiological model of

dengue transmission, in particular regarding the large asymp-
tomatic reservoir and the multiple circulating serotypes of the
virus, which impact the ability to estimate both the fraction of the
population that is susceptible and the reporting rate accurately
(26, 27). In the absence of serotype information, for example, we
chose not to include immunological covariates in our model. As
Pakistan moves toward an endemic transmission setting in the
northeast of the country, however, serotype data will be in-
creasingly important to determine how strain dynamics are likely
to affect the likelihood of outbreaks (28). Indeed, we believe that
the substantial lag time in Lahore we observed was probably due
to the recent large outbreak in 2011, which may have generated
substantial immunity and delayed the 2013 epidemic (16, 29).

Fig. 4. The estimated spatial spread of imported dengue. Using the mod-
eled dengue dynamics in Karachi and mobility measured from the mobile
phone data or a diffusion model, we estimated the time of the first in-
troduced case to the rest of the country. The mobile phone data predict the
earliest introductions in eastern Pakistan near Lahore and inland toward
Swat Valley (Mingora). In comparison, the mobility model predicts early in-
troductions in southern Pakistan with few introductions in Mingora. These
differences are highlighted in the difference in predictions plot—the number
of days earlier (red) from the mobile phone predictions or earlier (yellow) from
the diffusion model (without the mobile phone data).
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Karachi. The dengue risk is shown using the mobile phone data (blue) or the
diffusion model (green) to estimate introduction events from Karachi. In
general, the mobile phone data predict earlier risk to tehsils farther away
from Karachi, in particular tehsils in Punjab (Faisalabad and Lahore, for ex-
ample), than the diffusion model data. The diffusion model predicts the
earliest risk to nearby tehsils such as Malir.
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These uncertainties will continue to make forecasting challeng-
ing, although serotype data could improve model accuracy.
Given these difficulties, forecasting dengue epidemics will al-

ways need to encompass substantial stochastic variation, despite its
importance for targeting limited public health resources. Cur-
rently, vector control programs in Pakistan begin during the
monsoon season uniformly across the country. We believe that the
large estimated lead times this approach offers could aid control
managers, providing an early warning system. This approach
provides policy-relevant, real-time information about where and
when to expect dengue epidemics and therefore how to effec-
tively target interventions, surveillance, and clinical response.

Materials and Methods
Population Data. Pakistan’s large population (182 million) is broadly divided
into one capital territory, Federally Administered Tribal Area (FATA), Gilgit-
Baltistan, Azad Jammu and Kashmir, and four provinces, which are further
subdivided into 388 tehsils (equivalent to administrative unit 3 from 2008;
Fig. 1A). Karachi is the most populated city in the country and located along
the southern coast. The majority of the population in southern Pakistan lives
along the Indus river, whereas in the northern half the population lives in an
arc between Faisalabad and Peshawar that includes the major population
centers of Lahore, Islamabad, and Rawalpindi. We used population data
obtained from worldpop.org.uk.

Dengue Data. Data for Punjab province were collected by the Provincial
Health Department, whereas the District Health Office collected case data for
Swat District (Table S1) daily. All public and private hospitals, health clinics,
and laboratories reported any case of a patient presenting with dengue
symptoms. The data listed each patient who presented to a hospital or clinic,
regardless of whether the patient was admitted in the province or district,
seeking treatment for high fever, body aches, petechiae, and low platelet
counts (with a cutoff value for thrombocytopenia of <50,000/mm3). These
cases were then confirmed by using IgM or NS 1-Ag enzyme-linked immu-
nosorbent assay (ELISA). The data reported from Karachi were based on
official public releases from the Sindh Health department. All case data were
deidentified and aggregated to the tehsil level.

Mobile Phone Data.We analyzed all voice-based, originated, call data records
(CDRs) from 39,785,786 subscriber SIMs (security information management)
over a 7-mo period, from June 1 to December 31, 2013. The mobile operator
has the largest coverage of tehsil headquarters (352 in the dataset of 388
total tehsils) across Pakistan, particularly in rural areas (two-thirds of the
network). To comply with national laws and regulations of Pakistan and the
privacy policy of the Telenor group, the following measures were imple-
mented to preserve the privacy rights of Telenor Pakistan’s customers:
(i) The CDR/mobility data were processed on a backup and recovery server
made available by Telenor Pakistan. Only Telenor employees have access to
the detailed CDR/mobility data. (ii) Given the server arrangements, no de-
tailed CDR/mobility data were taken out of Pakistan or left the premises of
Telenor Pakistan. (iii) The processing of the detailed CDR/mobility data
resulted in aggregations of the data on a tower-level granularity that was
accessed only by Telenor employees. Further spatial aggregations to the
level of the tehsil were made available to the remaining coauthors.

On average, 28 million subscriber SIMs were recorded as active on a given
day, and of these 15.2 million subscribers generated outgoing, voice-event
CDRs that encoded location information. At the time of data acquisition, the
mobile phone operator had approximately a 25% market share (22% of the
population) and was the second largest provider of mobile telecommuni-
cation services in Pakistan. Multi-SIM activity is common in Pakistan, but we
believe that this should not create a systematic bias in mobility estimates
because the geographic coverage of the operator is so extensive.

Quantifying Travel Using the Mobile Phone Data. Every caller was assigned to
his or her most frequently used base station/mobile phone tower on a given
day, as in previous studies (30). For a given location, defined through the
location of a base station, the flux of that location is defined through the
number of active callers assigned to the base station and was then aggre-
gated to the tehsil level. On an average day, ∼12% of the total population
of Pakistan made a call. We measured daily travel between mobile phone
towers relative to subscriber location on the previous day. Trips were ag-
gregated to each tehsil based on the location of the origin and destination
tower. We normalized trip counts by the origin tehsils’ number of active

subscribers on each day (SI Text and Fig. S1). Aggregated forms of these
mobility patterns can be made available upon request.

On a country-wide scale there were two significant decreases in the
recorded CDR activity, one occurring during Ramadan (July 9 to August 7,
2013), reflecting less subscriber activity (Fig. S1). The decrease in the use of
mobile communication services during Ramadan has been confirmed by the
mobile operator as an expected effect, and this effect is seen every year. The
other decrease in activity was after October 25, due to a major system up-
grade to the core mobile system infrastructure, which impacted all of the
customers of the mobile operator. In the collected dataset, this led to a drop
in the number of location-generating subscribers recorded per day of ∼3.38
million. We adjusted the time series under the assumption that the system
upgrade was a 1-d event only, based on expert opinion from the operator,
and that the population in the customer base did not change its overall
behavior. The flux values were adjusted after this date, assuming that the
average would remain the same as in the beginning of the dataset (Fig. S1).
To analyze the relationship between mobility and dengue dynamics, we
approximated travel patterns between January 1 and June 1. We simulated
travel, assuming that the mean number of normalized trips (normalized by
flux) remained the same, and added noise [Normð0, σÞ, where σ is the vari-
ance in the number of trips between all pairs of tehsils] (SI Text and Fig. S1).

Climate Data. A. aegypti entomological and dengue viral factors are highly
influenced by temperature (19). Daily mean temperature and total pre-
cipitation were recorded at 39 weather stations across Pakistan, obtained
from the National Oceanic and Atmospheric Administration National Cli-
mate Data Center (Fig. S3). Temperatures peak in the middle of the year,
June, July, and August; are lowest in January and December; and are vari-
able across the country (daily averages between 9 °C and 27 °C) (for exam-
ple, Fig. S3). We converted temperature to dew-point temperature based on
the Numerical Terradynamic Simulation Group proposed model at the Uni-
versity of Montana (31). Dew-point values and temperature were then
converted to relative humidity.

Ento-Epidemiological Framework. To model dengue dynamics, we used an
ordinary differential equation model based on a model by Lourenco and
Recker to describe a dengue outbreak in Madeira, Portugal (10). This model
captures the dynamics of dengue between human and mosquito hosts
where the mosquito dynamics are dependent on temperature and relative
humidity (SI Text and Fig. S3). Here we assume that individuals can be in-
fected only once and we do not consider multiple serotypes. We assigned
temperature-dependent epidemiological variables as in Lourenco and Recker
(SI Text and Fig. S3) (10).

The relationship between relative humidity and dengue suitability has
been explored in a number of environments (3, 32). We have added an
additional variable to the temperature-dependent epidemiological variable,
the mortality factor that is based on relative humidity (33). In contrast to ref.
10, we analyzed the reporting rate ρ along with the biting rate a (SI Text).
We varied the reporting rate between 2% and 10% (a 2% reporting rate is
shown) because low rates of dengue reporting have previously been found
in South Asia (34). We did not fit the carrying capacity (K) explicitly and
performed a sensitivity analysis, changing values of K. Although various
values of K changed both a and ρ, it did not change the overall shape of the
epidemic (Fig. S4 and SI Text). Using the temperature data for Karachi and
the population (13.4 million), we estimated that a= 0.66,   ρ= 0.02 (assuming
K = 5e6; see SI Text for the sensitivity analysis).

Importation of Infected Travelers from Endemic Areas in Southern Pakistan. To
estimate the number and role of importation of cases from endemic areas in
southern Pakistan (Karachi) to all other tehsils, we first modeled the dengue
dynamics in Karachi, using the ento-epidemiological framework described
above. We are focused only on the role of travel within Pakistan as opposed
to cross-border migration (Discussion). Dengue is endemic in Karachi (16),
due to year-round climatic suitability and availability of vectors, and thus we
assumed the date of the first introduced was day 1 (t0 = 1).

We then estimated the flow of infected travelers from Karachi. We first
estimated the number of infected travelers per day who have left Karachi
(Tt =mtβt). Based on the mobile phone data, ∼30% (in the figures 30% is
shown: min, 25.6%; median, 30%; max, 34%) of subscribers have traveled
outside of Karachi per day (βt) (Fig. S5). We varied this percentage between
10% and 30% to account for uncertainty in this estimate and a possible
overestimate of travel because this value was based only on mobile phone
subscribers (25). The daily number of infected individuals in Karachi is based
on the modeled epidemic (mt). We determined the destinations of infected
travelers based on the daily percentage of travelers from Karachi to all other
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tehsils (xt,j, mobile phone data; gt,j, gravity model to location j). We calcu-
lated these flows using either the mobile phone data or a gravity (diffusion)
model.

Here, the amount of travel between two locations, i,   j estimated via a
basic diffusion, naive gravity, model is Ndiffusion,i,j = ðpopi × popjÞ=distði, jÞ
and we estimated the population (popi , popjÞ of each tehsil, using Worldpop.
org (www.worldpop.org), and calculated the distance (distði, jÞ) as the travel
time distance between centroids of each tehsil (35). We also fitted a stan-
dard gravity model to the mobile phone data (SI Text and Fig. S2).

The raw estimates of infected travelers from Karachi to all other tehsils per
day represent an upper limit. To account for variation in epidemiological and
individual factors, such as the within-host viral dynamics, we assumed that a
smaller subset of this upper bound of infected visitors could contribute to
transmission. We sampled the actual number of effective infected travelers
from a binomial distribution with a fixed probability [PrðTi × xt,j jγÞ and
PrðTi × gt,j jγÞ]. We varied this probability between 0.001 and 0.9 (0.01 is
shown); see SI Text for further details. Thus, for each day, we had an
estimated number of introduced cases from Karachi to each tehsil
[PrðTi × xt,j jγÞ× mt =Yx,t, PrðTi × gt,j jγÞ× mt =Yg,t]. The date of the first in-
troduced case from Karachi was sensitive to both the reporting rate for
Karachi and the percentage of travelers from Karachi (SI Text) (see Fig. S6 for
plots of each tehsil that reported cases), although it was less sensitive to
the fixed probability (Fig. S7). We also investigated the possibility of

importations from Mingora into Lahore (Fig. S8) during 2013 and find that
importations from Karachi to Lahore are more likely the cause of the
resulting epidemic in Lahore, although these two possible causes cannot be
disentangled in the case data.

Environmental Suitability and Epidemic Risk. We defined dengue suitability as
a function of temperature ZxðTÞ that is proportional to vectoral capacity (V)
for a given location x (19) (SI Text). This measure depends on the adult vector
mortality rate (determined by temperature and relative humidity) and the
infectious period for adult vectors. Values of ZxðTÞ approximately equal to
zero indicate that the environment does not permit onward transmission
and can be used to determine the timing of the geographic and temporal
limits of dengue transmission in Pakistan.

We created a composite measure of environmental suitability and in-
troduction of infected travelers from Karachi, riskepidemicðxÞ=

PN
t=1ZxðTtÞYx,t

for a location x, where ZxðTtÞ is the environmental suitability for dengue on
day t. This measure sums the environmental suitability (ZxðTÞ) times the
importation of infected travelers from Karachi per day (Yx,t).
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Mobility Dynamics Derived from Mobile Phone Data
As described in Materials and Methods, for all pairs of consecu-
tive days over the timeframe of the data, we calculated the
number of trips between all pairs of tehsils. This created a time
series of travel between tehsils. We normalized this time series
by the number of daily active subscribers in each origin tehsil
(flux value) (Fig. S1).

Dengue in Pakistan
The first confirmed case of dengue in Pakistan occurred in 1994
(16) in Karachi. Before 2008, the majority of confirmed cases
were confined to Karachi. Since then, there have been cases
reported in a number of provinces with the most severe outbreak
occurring in 2011 with over 20,000 confirmed cases, the majority
of these in the city of Lahore in Punjab province.
The dengue season and peak have varied by year, although the

peak season often occurs in the fall (October–November). A
comprehensive countrywide seroprevalence survey has not been
conducted in Pakistan, although smaller studies have been con-
ducted in Karachi. In a study from 1994, DEN-1 and DEN-2
were found in Karachi (36). In a later study, authors found that
DEN-2 (56.2%) was slightly more prevalent than DEN-3 (43.8%)
(16) based on serum samples collected at a tertiary care hospital in
Karachi from the 2006 outbreak. Based on samples collected
during the 2011 outbreak in Punjab, researchers found 100%
prevalence of DEN-2 in dengue-positive samples (495 total
samples) (36). In the same study, 26 of these samples had con-
current infection with DEN-2 and DEN-3 with no evidence of
DEN-1 or DEN-4.

Gravity Model
We also fitted a gravity model (three parameters) to the average
number of trips fromKarachi and all other tehsils per day (Fig. S2):

Ngm,i,j =
k
�
popβj

�
distði, jÞγ .

Here, k=−7.065,   β= 1.03,     γ = 0.156, with a reduction in deviance
of 70%, using Euclidean distance (kilometers) between centroids.
Using road distance (kilometers), k=−7.8577,   β= 1.03,   γ = 0.149,
with a reduction in deviance of 70%. Using travel time (minutes)
distance, k=−8.16,   β= 1.03,     γ = 0.217, with a reduction in de-
viance of 70%.

Converting Temperature to Relative Humidity
Relative humidity data are not regularly collected at the 39 weather
stations in our dataset (see Fig. S3 for the location of weather
stations). We converted temperature to relative humidity by first
converting temperature to dew point (Td). We used the method
first developed by the Numerical Terradynamic Simulation
Group at the University of Montana (www.ntsg.umt.edu) in their
MTCLIM model. Here, Td =Tn − kðTday −TnÞ, where k is a cal-
ibration coefficient (here k= 1), and Tday is the estimated diurnal
temperature Tday = 0.45pðTmax −TmeanÞ+Tmean, where Tmax is
the daily maximum temperature and Tmean is the daily mean
temperature. Dew point (Td) and temperature (T) are con-
verted to relative humidity, using RH= 100pexpðð17.625pTdÞ=
ð243.04+TdÞÞ=expðð1.7625pTÞ=ð243.04+TÞÞ.

Ento-Epidemiological Framework
To model dengue dynamics, we used an ordinary differential
equation model based on a model by Lourenco and Recker to
describe a dengue outbreak inMadeira, Portugal (10). This model
captures the dynamics of dengue between human and mosquito
hosts, where the mosquito dynamics are dependent on temper-
ature and relative humidity (SI Text and Fig. S3). Here we assume
that individuals can be infected only once and we do not consider
multiple serotypes.
For a fully susceptible, fixed human population size N, when

bitten by an infectious mosquito (λv→h), individuals enter an in-
cubation phase (Eh) for a mean duration of 1=γh d. Then these
individuals become infectious (Ih) for 1=σh d before entering the
final recovery (Rh).
The dynamics of the human population are defined by the

following equations:

dSh
dt

=−λv→h

dEh

dt
= λv→h − γhEh

dIh
dt

= γhEh − σhIh

  dRh

dt
= σhIh

 N = Sh +Eh + Ih +Rh.

The vector population dynamics are originally based on a
model developed by Yang et al. (37). The vectors are divided
into aquatic (A, which includes eggs, larvae, and pupae) and
adult females (V). Adult females are further subdivided into
susceptible (SV), incubating (IV) for 1=γV d, when they become
infectious (IV). The dynamics of the vector population are
defined by

dA
dt

= θA

�
1−

A
K

�
V −

�
eA + μVA

�
A

dSV
dt

= eAA− λh→V − μVVSV

dEV

dt
= λh→V − γVV   EV − μVVEV

dIv
dt

= γVEV − μVVEv

V = Sv +EV + IV .

Here, eA denotes the rate of progression from aquatic phase to
adults, μVA and μVV are the mortality rates for the aquatic phase
and adults, and θA is the intrinsic oviposition rate. The additional
logistic term ð1−A=KÞ is a term to measure the available capac-
ity to receive eggs that is scaled by the carrying capacity (K).
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The vector to human (λv→h) and human to vector (λh→v) inci-
dence rates are assumed to be density dependent and frequency
dependent, respectively,

λV→h =
aϕV→hIV Sh  

Nh

λh→V =
aϕh→V IhSV

Nh
,

where a is the biting rate and ϕV→h  ,   ϕh→V are the vector-to-
human and human-to-vector transmission probabilities per bite.
The expression for dengue’s basic offspring number (Q), the
mean number of viable offspring produced by one female adult
during its entire lifetime, is derived as

Q=
eVA

eVA + μVA
+
θV

μVV
.

For a given temperature T0, the expected population size of each
mosquito life stage is modeled and used to initialize the system,
using the temperature on the first day (T0): AðT0Þ=Kð1− 1=
QðT0ÞÞ and V ðT0Þ=Kð1− 1=AðT0ÞÞeVAðT0Þ=μVV ðT0Þ.
The value of dengue’s basic reproduction number is R0 =

ðV=NhÞa2ϕV→hϕh→V=μVVσ
hðγVV + μVV Þ.

Temperature-Dependent Parameters
The ento-epidemiological dengue model included seven ento-
mological parameters that were dependent on temperature (T, in
degrees Celsius) (Fig. S3). These parameters included the tran-
sition rate from aquatic to adult mosquito life stages (eVA),
mortality rate of aquatic (μVAÞ and adult (μVV) mosquito life stage,
intrinsic oviposition rate of adult mosquito life stage (θVV), ex-
trinsic incubation period of adult mosquito life stage (γVV), and
both the human-to-vector (ϕh→V) and vector-to-human (ϕV→h)
probabilities of transmission per infectious bite. We followed the
same functional equations for these parameters as in refs. 10 and
37, which were based on temperature-controlled experiments
performed on Aedes aegypti populations,

eVAðTÞ= 0.131− 0.05723T + 0.01164T2 − 0.001341T3

+ 0.00008723T4 − 3.017× 10−6T5+ 5.153× 10−8T6

− 3.42× 10−10T7

μVAðTÞ= 2.13− 0.3787T + 0.02457T2 − 6.778× 10−4T3

+ 6.794× 10−6T4

μVV ðTÞ=RHFðT, RHÞ p �0.8692− 0.1599T + 0.01116T2

− 3.408× 10−4T3 + 3.809× 10−6T4�

θVV ðTÞ=−5.4+ 1.8T − 0.2124T2 + 0.01015T3 − 1.515× 10−4T4

γVV ðTÞ=
�
3.3589× 10−3Tk

��
298× exp

�ð1,500=RÞð1=298− 1=TkÞ
�

1+ exp
�ð6.203× 1021Þ=Rð1=ð−2.176× 1030Þ− 1=TkÞ

� ,

where Tk is in degrees kelvin,

ϕh→V ðTÞ= 1.044× 10−3T × ðT − 12.286Þ× ð32.461−TÞ1=2

ϕv→hðTÞ= 0.0729T − 0.97.

In addition, we have included an adult mortality factor based on
relative humidity (33). Temperature and relative humidity are
converted to a vapor pressure measure, VP= 6.11p 10 ð̂7.5pT=
ð237.3+TÞ=10. This value is converted to a relative humidity factor
(RHF) based on the following rules: If 10<VP< 30  ,  RHF=
1.2− 0.2 pVP, and if VP≥ 30,    RHF= 0.5.
Similar to ref. 10, we used a number of fixed parameters in-

cluding the human latency period (1=γh = 2 d), the human infectious
period (1=σh = 4 d), and the human population size of Lahore,
Karachi, or Mingora. We performed a sensitivity analysis on the
mosquito carrying capacity (K).
We fitted the biting rate and the reporting rate, using a maximum-

likelihood framework.

Fitting the First Introduced Case into Lahore and Mingora
from Karachi, Using the Epidemiological Data
To compare our importation estimates from the mobile phone
data, we estimated the first introduced case into both Mingora
(Babuzai tehsil) and Lahore, using only the dengue case data for
these locations. Using the same ento-epidemiological framework, we
estimated the date of the first introduced case toMingora or Lahore
(T0) for a range of reporting rates (ρ). We used the same biting rate
and carrying capacity for Karachi, although we recalculated the
seven entomological parameters based on the daily temperatures in
Mingora or Lahore. For both locations, we varied the reporting rate
(ρ= 0.03,   0.06,   0.1,   0.3,   0.5,   0.6,   0.7,   0.8,   0.9) and estimated T0
using a maximum-likelihood framework. In Mingora, we estimate
T0 is between days 210 and 231. For comparison, day 231 (August
19) is the date of the first reported case in Mingora. In Lahore, we
estimate T0 is between days 124 and 242. For comparison, 95% of
the cases occurred after day 259 (September 16), which is ∼4 mo
after day 124 and ∼2 wk after day 242.
Using a range of reporting rates (for comparison the fitted

reporting rate for Karachi is 0.03), we estimated the date of
the first introduced case (T0), using the ento-epidemiological
framework described in Materials and Methods. For low report-
ing rates (below 30%), T0 increases with the reporting rate. For
high reporting rates, the values remain constant at 231 (Mingora)
and 130 (Lahore).

Introductions into Other Tehsils from Karachi
We simulated the introduction of infected travelers fromKarachi to
all other tehsils based on either the mobile phone data or a gravity
model. We first estimated the number of infected individuals in
Karachi each day, using the ento-epidemiological framework de-
scribed above. In each simulation we selected the percentage of
infected individuals inKarachi who traveled to another tehsil (range
of 10%, 20%, or 30%). This percentage provided an estimate on the
number of infected travelers fromKarachi. The destination for each
infected traveler was determined based on the actual distribution of
trip destinations from Karachi per day. We then varied the prob-
ability that these infected visitors in all other tehsils would impact
the dengue dynamics in that location and sampled a binomial

Reporting rate, ρ Mingora, estimated T0 Lahore, estimated T0

0.03 210 124
0.06 221 130
0.1 228 130
0.3 231 130
0.5 231 130
0.6 231 130
0.7 231 130
0.8 231 130
0.9 231 130
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distribution with a fixed probability (probability varied from 0.001 to
0.9). For each fixed percentage of infected individuals who travel
and probability (P), we ran 200 simulations.

Introductions from Swat to Lahore
The Swat epidemic peaked 2 mo earlier than the Lahore epi-
demic; we also investigated the possible role of importation from
Swat to Lahore. First we compared travel from Swat tehsils that
have had at least 15 cases of dengue (Alai, Alpuri, Babuzai, Bahrain,
Barikot, Charbagh, Chiksar, Dassu, Kabal, Kalam, Khwazakhela,
Mamund, Matta Khararai, Matta Sebujni, and Peshawar) to the
amount of travel from Karachi to Lahore. Based on the CDR
data, the amount of travel from Karachi to Lahore is an order of
magnitude greater than the amount of travel from Swat to Lahore
(number of trips per day from Karachi to Lahore, median, 18,980;
min, 10,130; max, 21,940) (number of trips per day from Swat to
Lahore, median, 4,463; min, 2,556; max, 5,345).
We modeled the dengue dynamics in Swat, using the same

ento-epidemiological framework described inMaterials and Methods
with ρ= 0.03, T0 = 210,   a= 0.66.

A. aegypti Suitability in Pakistan
A. aegypti have been observed in many parts of Pakistan, in-
cluding at least 13 major cities, based on a genetic population
structure study conducted in 2009 and 2010 (38). In Karachi, the
vector has been present in all parts of the city since at least 2000
(39), with a follow-up study in 2010 (40). It has been hypothe-
sized that malaria control programs in the 1950s reduced the
A. aegypti population and since the early 2000s the tire trade has
spread the vector to other parts of Pakistan from Karachi.

Dengue Temperature Suitability
We used a relative dengue suitability index, a function propor-
tional to vectoral capacity. This measure is based on temperature
and relative humidity and does not take into account other factors
such as population density or percentage urban, which has been
shown to impact Aedes environmental suitability (19).
We defined dengue suitability as a function of temperature

ZxðTÞ that is proportional to vectoral capacity (V) for a given
location x (19). Values of ZxðTÞ approximately equal to zero
indicate that the environment does not permit onward trans-
mission and can be used to determine the timing of the geo-
graphic and temporal limits of dengue transmission in Pakistan,

V =
ma2

μV
e−μ

V
V γ

V
V   ,

where m is the ratio of adult female mosquitoes to humans, a is
the human blood feeding rate, μVV is the instantaneous per-capita
death rate of adult mosquito females, and γVV is the length of the
extrinsic incubation period for the pathogen (complete equations in
SI Text). In our model, μVV is also scaled by a mortality factor based
on absolute humidity. Letting λ=mμVV , ZxðTÞ= exp−μ

V
V ðTÞγVV ðTÞ=

μVV ðTÞ2 ∝V ðTÞ= λa2ðe−μVV ðTÞγVV ðTÞ=μVV ðTÞ2Þ, where ZðTÞ effectively
measures the relative number of infectious mosquitoes supported in
an environment with temperature T, given a constant λ,   a. Given
the poor epidemiological data to estimate λ,   a in many locations in
Pakistan, ZxðTÞ provides a relative measure of vectoral capacity for
a location x and temperature T.
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Fig. S1. The mobility values derived from the mobile phone data. (A) The mobility estimates for travel from Karachi to Lahore. Using the mobile phone data,
we calculated both the number of trips between tehsils (A, Top Left) and the daily number of active subscribers: flux value (A, Top Right). The number of trips
was normalized by the daily number of active subscribers (A, Bottom Left) that was used to estimate the importation of infected travelers from Karachi. Our
dataset runs from June to December 2013 and we inferred the mobility estimates (gray) for January–June of that year (Materials and Methods) (A, Bottom
Right). (B) The most frequently traveled routes based on the mobile phone data. We compared the most traveled routes (top 10,000 routes) 1 mo before
Ramadan (B, Left) (June), during Ramadan (July) (B, Center), and after Ramadan (B, Right) (September). The top routes remain consistent throughout the major

Legend continued on following page
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holiday, in particular the large amount of travel between Karachi and Punjab province. A line is drawn if more than 10,000 trips were taken over a route. (C)
Country-wide population flux values per day. Total population flux per day was measured (red line). Ramadan is shown in gray. We have adjusted the mobile
phone data (CDRs) (black line shows adjustment) to account for a sharp drop in the raw CDRs after day 145 and fitted the adjusted data [spline, blue line;
moving average (MA) trend, purple line], using two common time series methods (a MA and smoothing spline) to smooth the data. For the remaining analysis,
we use these trend lines from these time series smoothing methods.
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Fig. S2. The various distance measures and gravity model fits to the mobile phone data. We calculated the Euclidean distance (kilometers), road distance
(gray, in kilometers), and travel time distance (red, in minutes) between tehsil centroids. (A) The three measures were highly correlated (Pearson’s correlation
coefficient between Euclidean distance and road distance, 0.988; between Euclidean distance and travel time distance, 0.99). We then fitted gravity models to
the mobile phone data, using each distance measure: (B) Euclidean distance, (C) road distance, and (D) travel time distance. Shown is the normalized predicted
amount of travel from each gravity model compared to the mobile phone data.
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Fig. S3. The temperature data from weather stations in Pakistan. (A) The location of weather stations in Pakistan. (B) Daily temperature (in Celsius) from
selected weather stations in Pakistan. (C) The temperature-dependent parameters used in the ento-epidemiological framework for Karachi.
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Fig. S6. Mobility models derived from mobile phone data predict the timing of introduced cases around the country that spark epidemics.
Shown are the estimated introduced cases from Karachi to all tehsils that have reported at least 15 cases. The estimated introductions from the
mobile phone data (blue), the diffusion model (orange), the gravity model (green), and actual case data (red) are shown. Introductions are
estimated assuming that 30% of individuals travel consistent with the mobile phone data (prob = 0.01). If there were no estimated introductions
from both the mobile phone data and the diffusion model, no boxes are drawn. In the majority of the KPK tehsils, both the mobile phone data
and the diffusion model did not predict any introductions, likely because these cases were associated with the initial outbreak in Mingora (Alai–
Peshawar). However, in the Punjab tehsils (Faisalabad, Ferozawala, Rawalpindi, and Sheikhupura) the mobile phone data consistently predicted an
earlier introduction than the diffusion model and before the date of the first reported case.
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Introductions into Lahore: Varying the reporting rate
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Fig. S7. The estimated introductions for Mingora/Babuzai tehsil and Lahore while varying parameters. (A and B) The estimated introductions for Mingora/Babuzai and Lahore assuming various reporting rates for Karachi. Shown are the estimated introduced cases from
Karachi to Mingora and Lahore (assuming 30% of individuals travel and a probability of 0.01) with various reporting rates: 2%, 3%, 5%, and 10%. Introduced cases were estimated using the mobile phone data (blue), a gravity model fitted to the mobile phone data
(orange), or a diffusion model (green). The mobile phone data consistently predict earlier introductions than either the gravity model or the diffusion model, with the diffusion model predicting the latest introductions of the three methods. In particular, the diffusion
model does not report introductions into Mingora and for high reporting rates (10%), there are no predicted introductions into this tehsil. (C and D) The estimated introductions for Mingora/Babuzai and Lahore, assuming various percentages of individuals travel from
Karachi. Shown are the estimated introduced cases from Karachi to Mingora and Lahore (assuming a 2% reporting rate and a probability of 0.01) with various percentages of individuals traveling from Karachi: 10%, 20%, and 30%. Unsurprisingly, as the percentage of
individuals who travel increases, the number of importations to both Mingora and Lahore increases. The timing of these introductions also increases as the percentage of individuals who travel from Karachi increases. (E and F) The estimated introductions for Mingora
and Lahore, assuming various probabilities. Shown are the estimated introduced cases from Karachi to Mingora and Lahore (assuming 30% of individuals travel and a 2% reporting rate) with various probabilities: 0.001, 0.01, 0.1, and 0.9 (Materials and Methods).
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Table S1. The timing and number of reported dengue cases per tehsil in 2013 used in the analysis

Tehsil Date of first case in 2013 Date of peak cases in 2013 Date of last case in 2013 Total no. cases in 2013

Babuzai August 19 September 17 November 18 4,029
Lahore May 13 November 16 December 26 1,538
Rawalpindi August 30 November 4 December 19 883
Matta Sebujni August 22 September 15 November 12 864
Barikot August 20 September 2 November 15 731
Matta Khararai August 20 September 18 November 12 678
Khwazakhela August 21 September 6 November 17 413
Chiksar August 22 September 21 October 5 386
Kabal August 23 September 8 November 5 357
Alpuri August 22 September 18 October 8 161
Kalam August 24 September 8 September 30 60
Dassu September 3 September 17 November 9 56
Charbagh August 22 September 10 October 10 49
Ferozewala August 5 August 5 December 13 46
Alai October 5 October 6 November 1 37
Bahrain September 3 September 21 November 4 34
Sheikhupura August 7 September 12 November 27 24
Mamund September 1 September 13 October 25 22
Faisalabad April 30 November 9 December 20 20
Peshawar October 5 October 5 October 22 18
Muridke August 21 September 18 December 1 14
Bahawalpur September 19 November 9 November 27 13
Kasur September 25 November 13 November 30 11
Katlang September 12 September 12 October 14 11
Charsadda September 1 September 5 October 25 9
Multan September 5 October 8 December 19 9
Balakot August 27 September 8 September 27 8
Bisham August 24 September 5 September 21 8
Martung September 6 September 17 October 24 8
Gujranwala September 5 November 13 December 5 6
Chagharzai August 30 September 17 September 17 5
Sahiwal September 11 November 1 November 21 5
Chakwal October 12 October 12 November 7 4
Narowal November 4 November 4 November 29 4
Sialkot August 20 December 12 December 12 4
T.T.Singh June 29 September 23 November 7 4
Attock October 10 October 24 October 24 3
Bahawalnagar September 20 September 20 November 9 3
D.G.Khan September 19 December 14 December 14 3
Depalpur September 15 September 15 November 23 3
Hasilpur October 4 October 16 October 16 3
Kahuta October 5 October 5 November 21 3
Rahimyar Khan September 16 September 16 October 31 3
Sargodha September 20 December 3 December 3 3
Arif Wala September 2 October 27 October 27 2
Burewala October 21 December 14 December 14 2
Chiniot September 17 September 17 October 22 2
Chunian October 29 October 29 November 16 2
Dir October 3 October 5 October 5 2
Karor Lal Esan August 31 September 16 September 16 2
Lodhran October 14 October 14 November 19 2
Pakpattan August 31 August 31 September 24 2
Shakargarh August 30 August 30 December 23 2
Tandlianwala August 5 August 5 October 9 2
Vehari October 31 November 1 November 1 2
Bhalwal November 1 November 1 November 1 1
Chichawatni November 28 November 28 November 28 1
Gujrat August 21 August 21 August 21 1
Hafizabad October 4 October 4 October 4 1
Haroonabad November 17 November 17 November 17 1
Jahanian December 5 December 5 December 5 1
Jatoi September 19 September 19 September 19 1
Khanewal November 3 November 3 November 3 1
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Table S1. Cont.

Tehsil Date of first case in 2013 Date of peak cases in 2013 Date of last case in 2013 Total no. cases in 2013

Kharian November 2 November 2 November 2 1
Khushab November 13 November 13 November 13 1
Kot Addu August 26 August 26 August 26 1
Layyah November 14 November 14 November 14 1
Mailsi July 16 July 16 July 16 1
Mardan November 1 November 1 November 1 1
Mian Channu October 31 October 31 October 31 1
Nankana Sahib August 5 August 5 August 5 1
Pasrur October 29 October 29 October 29 1
Pindi Bhattian August 6 August 6 August 6 1
Safdarabad October 4 October 4 October 4 1
Sillanwali November 19 November 19 November 19 1
Timergara October 31 October 31 October 31 1
Ya October 22 October 22 October 22 1
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