Denguenator

Predicting Dengue outbreaks using Human Mobility and Climatic factors

Content

Introduction

Background

Data set

Preprocessing

Mapping different geographical areas

Time expanded contact networks

Hidden Markov Model

Motopopulation Model

Introduction

- Dengue is a major health concern in Sri Lanka, which causes about 30,000 cases and 200 deaths annually[1].
- Many countermeasures have been taken, but still is not possible to reduce to a significant level.
- The aim of this project is to build a predictive model of Dengue propagation in Sri Lanka based on human mobility and other climatic factors.

Background

Researches show that there is high probability of causing Dengue outbreaks with horizontal propagation[2]

Human mobility is an important factor

Data Set

- Call Detail Records
- Population Data
- Meteorological Data
 - Rainfall Data
 - Temperature Data
- Past Dengue Cases

Pre processing

Data we have corresponds to different geographical areas...

HOW to map them together???

Mapping different geographical areas

Creating Voronoi diagrams

Mapping different geographical areas

- Creating Voronoi diagrams
- Overlapping each other

MOH areas and cell towers overlapping map

Mapping different geographical areas

- Creating Voronoi diagrams
- Overlapping each other

- Assign each unit (towers or weather stations) to MOH level
- Calculate MOH level values

Mobility in MOH level

Get the list of the cell towers corresponding to a certain MOH area

Keep the fractional coverages of each of them

Using this fractional coverage values, get the mobility between MOH areas.

Mobility to MOH level

$$m_1m_2=\sum_{i=1}^n f_{ij}\circ f_{ij}\circ f_{ij}\circ Mability between torse j and $k$$$

Weather to MOH

Filling missing data

Rainfall data

Discarded weather stations which are missing more t

Inverse Distance Weighting (IDW) method[3]

Weather to MOH

Filling missing data

Temperature data

Discarded one weather station

Filled the missing values by the average temperature

Weather to MOH

Aggregating to weeks

Getting weather stations corresponding to a MOH

Getting fractional coverages

Methods to Predict Dengue Propagation

- 1. Time-expanded contact network
- 2. Metapopulation model

Time-expanded contact network

Time-expanded contact network

Consider three weeks:

Time-expanded contact network

How to get connections between weeks:

Time-expanded contact network - implementation

Hidden Markov Models

Artificial Neural Networks

How HMM is suitable for this problem?

There is a hidden state - Next week's dengue state

There are related observation - * This week's dengue states

Two Approaches:

Separate HMM for each neighbor

Single HMM for all the neighbors

- Existing algorithms do not support for multiple emission sequences for a single hidden sequence

- Thousands of observation states for a single

hidden state that makes predictions unreliable

How to define neighbors:

- get all the inflow mobility values from all the MOH areas to considering MOH area
- get mobility per host for all the MOH areas by dividing the above values by the populations of MOHs
- get the average mobility per infected host by multiplying the above value by average dengue cases of MOHs
- mean of all the average mobility per infected host values is considered as the threshold value (eg: For Moratuwa MOH, threshold value is 0.375)

How to define states:

- Using discrete values

How to define discrete values:

Using intervals

How to define intervals:

- Observed the data set to define the size of the intervals based on the weekly reported dengue cases (identified as 1 10)
- Used automated brute force approach to select the best value which gives the minimum RMSE value for predictions (identified as 4 for most cases)
- eg: 0-3 => 1, 4-7 => 2, 8-11 => 3...... for value 6 state should be 2

MatLab - HMM toolbox is used

Hidden states sequence - start from week 2

Emission sequence (Mobility per infected host of neighbours, rainfall of candidate MOH, previous week dengue level of candidate MOH) - start from week 1

Separate sequence for each neighbour

Estimate the state transition matrix and observation emission matrix that can be considered as the model training step

How to get predictions:

- Using Viterbi algorithm
- The Viterbi algorithm is a dynamic programming algorithm for finding the most likely sequence of hidden states
- Give hidden state for a given observation, using observation emission matrix and state transition matrix

eg : Next week's dengue level of Moratuwa =

HMM_Viterbi (This week's dengue level, matrix_1, matrix_2)

How to merge predictions:

- get predictions for this week using previous week's data
- get error using actual value and prediction (error = actual value prediction)

 $- (1.4 \times 4 \times 1.1 \times 0.1 \times 0.1 \times 1.1 \times 0.1 \times 0.1 \times 1.1 \times 0.1 \times 0.1$

- define a weight function (w = 1/error)
- get weight functions for each neighbor (w1, w2....., wn)
- get predictions for next week from each neighbor (p1, p2....., pn)
- get final prediction (p)

Results for Moratuwa MOH area:

- 70% of data for training, 30% of data for testing
- Root mean square error = 5.65685

Many limitations.....

Merging results from many models

Cannot get prediction for a mobility per infected host state which is greater than the maximum state in train sequence

Limited set of training data

Model is specifically tuned to observe mobility, therefore cannot get predictions for dengue hotspots like Colombo - MC

- Dengue level of Colombo MC is comparatively very high than the neighbors
- Assume neighbors does not affect for the dengue propagation in Colombo MC

Data preprocessing

Define the top **MOHs** with the highest average mobility per infected host of considering **MOH**

- A Average dengue cases of the considering MOH
- M Mobility with the candidate MOH
- P Population of the considering MOH

Average mobility per infected host of considering MOH = (M*A)/P

One MOH Division

Week Number	MOH1	MOH2	монз	MOH4	MOH5	Last Week Rainfall	Last Week Dengue Cases	This Week Dengue Cases
1	23	12	43	3	54	10	21	78
2	32	22	51	21	32	22	12	22
3	11	12	32	32	12	13	32	22

Data preprocessing

Data normalization

In Order to get convergent results the data set was normalized using the following method

Normalized Values = (Value - Min)/(Max-Min)

Colombo-MC-MOH

Colombo-MC-MOH

RMS Error 20.68674

Dehiwala MOH

K=12

Dehiwala MOH

RMS Error 12.93261

Kolonnawa MOH

Kolonnawa MOH

RMS Error 13.3945

Moratuwa MOH

Moratuwa MOH

RMS Error

9.98

Limitations

Accuracy of weather data due to lack of weather stations

Lack of data points(52 per ANN)

Future Improvements

Train a model for the entire country

Metapopulation.

Group of populations that are separated by space but consist of the same species.

These spatially separated populations interact as individual members move from one population to another.

Metapopulation Model

Used to describe internal dynamics of a population

The concept of metapopulation model was introduced by Richard Levins (an American ecologist) in 1969. [Ref]

The Levins model

$$dp/dt = mp(1 - p) - ep$$

Dengue Dynamics

Seven class vector host model

Introduced by Carlos Alan Tor

$$\dot{S}_{v} = \mu N_{v} - \beta_{v} S_{v} \frac{I_{h}}{N_{h}} - \mu S_{v}$$

$$\dot{E}_{v} = \beta_{v} S_{v} \frac{I_{h}}{N_{h}} - \mu_{v} E_{v} - \kappa E_{v}$$

$$\dot{I}_{v} = \kappa E_{v} - \mu_{v} I_{v}$$

$$\dot{S}_{h} = -\beta_{h} S_{h} \frac{I_{v}}{N_{v}}$$

$$\dot{E}_{h} = \beta_{h} S_{h} \frac{I_{v}}{N_{v}} - \gamma E_{h}$$

$$\dot{I}_{h} = \gamma E_{h} - \delta I_{h}$$

$$\dot{R}_{h} = \delta I_{h}.$$

The Basic Model

- Basic model for a single population without the effect of stochastic migration.
- Calculate the rate of change for each types of vectors/hosts.
- Dimensions of each class is either hosts/day or vectors/day

Model With Stochastic Migration

Basic model with two patches

Consider only the host migration

$$\dot{S}_{\nu 1} = \mu N_{\nu 1} - \beta_{\nu 1} (P_{11} \frac{I_{h1}}{N_{h1}} + P_{21} \frac{I_{h2}}{N_{h2}}) S_{\nu 1} - \mu S_{\nu 1}
\dot{E}_{\nu 1} = \beta_{\nu 1} (P_{11} \frac{I_{h1}}{N_{h1}} + P_{21} \frac{I_{h2}}{N_{h2}}) S_{\nu 1} - \mu E_{\nu 1} - \kappa E_{\nu 1}
\dot{I}_{\nu 1} = \kappa E_{\nu 1} - \mu I_{\nu 1}
\dot{S}_{h1} = -\beta_{h1} P_{11} S_{h1} \frac{I_{\nu 1}}{N_{\nu 1}}
\dot{E}_{h1} = \beta_{h1} P_{11} S_{h1} \frac{I_{\nu 1}}{N_{\nu 1}} - \gamma E_{h1}
\dot{I}_{h1} = \gamma E_{h1} - \delta I_{h1}
\dot{R}_{h1} = \delta I_{h1}$$

$$\dot{S}_{v2} = \mu N_{v2} - \beta_{v2} (P_{12} \frac{I_{h1}}{N_{h1}} + P_{22} \frac{I_{h2}}{N_{h2}}) S_{v2} - \mu S_{v2}
\dot{E}_{v2} = \beta_{v2} (P_{12} \frac{I_{h1}}{N_{h1}} + P_{22} \frac{I_{h2}}{N_{h2}}) S_{v2} - \mu E_{v2} - \kappa E_{v2}
\dot{I}_{v2} = \kappa E_{v2} - \mu I_{v2}
\dot{S}_{h2} = -\beta_{h2} P_{22} S_{h2} \frac{I_{v2}}{N_{v2}}
\dot{E}_{h2} = \beta_{h2} P_{22} S_{h2} \frac{I_{v2}}{N_{v2}} - \gamma E_{h2}
\dot{I}_{h2} = \gamma E_{h2} - \delta I_{h2}
\dot{R}_{h2} = \delta I_{h2}$$

Dengue Mobility

Probability of an infected person from patch "i" visiting patch "j"

$$\sum_{i=1}^{n} P_{ij} \frac{I_{hi}}{N_{hi}}$$

P_{ii} - Probability of a person from patch "i" visiting patch "j"

Past researches derived P_{ii} using the gravity model

In our study,
$$P_{ij} = \theta \frac{n_i^\alpha n_j^\beta}{d_{ij}^\gamma}, \qquad \text{MNDB} \qquad P_{ij} = \frac{m_{ij}}{N_{hi}}$$

- λ Host per capita infection rate (1/5.5 Days)
- δ Host per capita recovery rate (1/4 Days)
- μ_{v} Vector per capita birth/death rate (1/10.5 Days)
- k Vector per capita infection rate (1/5.5 Days)
- μ_h Host per capita birth/death rate (1/(3*10⁴)Days)

Mosquito Population - N_{vi}

In past researches it is assumed to be 3 times the host population.[3][4]

No credible source of information in Sri Lanka.

Can vary from one MOH area to another.

Solution is to introduce a scaling factor " θ "

 θ = Number of vectors per host

So that, $N_{vi} = \theta N_{hi}$

Transmission Rates - β_{vi} And β_{hi}

Calculate best transmission rates per MOH area that fits for our data

In Peru the ranges for β_{vi} and β_{hi} are [0.2-0.4] and [0.25-0.45]. [3]

Improvements to the model

Introduced θ

P_{ii} derived using MNBD

Removed the effect of μ_{hi} when calculating initial susceptible population

$$\dot{S}_{vi} = \mu_{vi} N_{vi} - \beta_{vi} \left(\sum_{i=1}^{n} P_{ij} \frac{I_{hi}}{N_{hi}} \right) S_{vi} - \mu_{vi} S_{vi}$$

$$\dot{E}_{vi} = \beta_{vi} \left(\sum_{i=1}^{n} P_{ij} \frac{I_{hi}}{N_{hi}} \right) S_{vi} - \mu_{vi} E_{vi} - \kappa E_{vi}$$

$$\dot{I}_{vi} = \kappa E_{vi} - \mu_{vi} I_{vi}$$

$$\dot{S}_{hi} = N_{hi} - eta_{hi} P_{ii} rac{I_{vi}}{N_{vi}} S_{hi} - \mu_{hi} S_{hi}$$

$$\dot{E}_{hi} = eta_{hi} P_{ii} rac{I_{vi}}{N_{vi}} S_{hi} - \lambda E_{hi} - \mu_{hi} E_{hi}$$

$$\dot{I}_{hi} = \lambda E_{hi} - \delta I_{hi} - \mu_{hi} I_{hi}$$

The Challenge

How to calculate θ , β_{vi} and β_{hi} For each MOH area?

Model I_{hi} values for each combination of θ , β_{vi} and $~\beta_{hi}$

Calculate the root mean squared error (RMSE) of modeled values against actual I_{hi} (past dengue cases) values.

Pick the combination that has the minimum RMSE value

$$RMSE = \sqrt{\frac{\sum (I_{actual} - I_{model})^2}{n}}$$

Can be identified as an optimization problem

Calculating minimum RMSE value

Brute Force approach

θ from 5 to 100 with a resolution of 5

 β_{vi} and β_{hi} from 0 to 1 with a resolution of 0.01

Operations per MOH area 19*100*100*37*7 = 48.1Mn

Takes around 140 seconds per MOH area

12 hours to calculate for the whole country

Simulated annealing

Genetic Algorithm

RMSE density plots for β_{vi} and β_{hi} combinations

MC- Colombo $\theta = 10$

MC- Colombo $\theta = 20$

MSE density plots for β_{vi} and β_{hi} combinations

MC- Colombo $\theta = 50$

MC- Colombo $\theta = 100$

Fitted β_{vi} and β_{hi} and θ values

МОН	Bvi	Bhi	RMSE	Theta	Weekly average cases
MC - Colombo	0.14	0.56	8.935	20	75
Dehiwala	0.12	0.97	6.2741	60	28
Kollonnawa	0.52	0.9	10.8857	20	24
Kaduwela	0.68	0.94	4.9048	85	19
Moratuwa	0.73	0.68	3.6663	35	15
Panadura	0.27	0.81	4.7938	55	14

Above MOH areas has the highest averages of weekly reported dengue cases

Fitted β_{vi} and β_{hi} and θ values

Calculated values for MOH areas which has low weekly average cases

МОН	Bvi	Bhi	RMSE	Theta	Weekly average cases
Rajanganay	0	0	1.1094	10	3
Deraniyagala	0	0	1.0190	10	3
Beliatta	0	0	0.8320	10	2
Hasalaka	0	0	0.8660	10	2
Dambulla	0	0	0.8879	10	2

Model fit for 2013 first 37 weeks

MC-Colombo MOH RMSE=11.3544

Dehiwala MOH RMSE = 6.2741

Model fit for 2013 first 37 weeks

Kolonnawa MOH RMSE = 10.8857

Kaduwela MOH RMSE=4.9048

2013 predictions for weeks 38-52

MC-Colombo MOH, RMSE = 6.0906

Dehiwala MOH, RMSE = 4.5804

2013 predictions for weeks 38-52

Kolonnawa MOH, RMSE = 5.4982

Kaduwela MOH, RMSE = 3.0159

2014 predictions

Cases

MC-Colombo, RMSE = 30.8557

Problems and challenges Faced

Lack of knowledge in epidemiology domain

No credible source for disease related data (rates/parameters etc.) in Sri Lanka

Not many researches to compare the results with

Potential Enhancements/Future work

Predict based on predictions

Make θ a temperature-based parameter

Fully automated learning and prediction system

Visualization of the predictions

Conclusion

Metapopula**-- ------ ^ NINI ---- I IN / N / ----- dela

MOH area	Metapopulation Model	ANN	HMM
MC-Colombo	6.0906	20.6867	-
Dehiwala	4.5804	12.9326	19.5959
Kolonnawa	5.4982	13.3945	12.0
Kaduwela	3.0159	9.98	11.313

RMSE values of predictions

There is a significant effect on human travel on dengue propagation

Dengue disease dynamics can be explained using metapopulation model

Thank You!

Q & A

References:

- [1] National Dengue Control Unit, Sri Lanka. http://www.dengue.health.gov.lk/. Accessed: 2015-09-07.
- [2] What is Dengue and how is it treated? http://www.who.int/features/qa/54/en/. Accessed: 2015-09-10.
- [3] Chen, Feng-Wen, and Chen-Wuing Liu. "Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan." *Paddy and Water Environment* 10.3 (2012): 209-222.
- [4] Torre, Carlos Alan. *Deterministic and stochastic metapopulation models for dengue fever*. Arizona State University, 2009.

References

[5] - Sarzynska, Marta, Oyita Udiani, and Na Zhang. "A study of gravity-linked metapopulation models for the spatial spread of dengue fever." *arXiv preprint arXiv:1308.4589* (2013).