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LIRNEasia is a regional non-profit
think tank. Our mission is that of

Catalyzing policy change through research to improve
people’'s lives in the emerging Asia Pacific by
facilitating their use of hard and soft infrastructures
through the use of knowledge, information and

technology.
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Big data work only in Sri Lanka in 2012-16
Is being extended to Bangladesh in 2016-17
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Big data

* An all-encompassing term for any collection
of data sets so large or complex that it becomes

difficult to process using traditional data processing
applications.

* Challenges include: analysis, capture, curation,
search, sharing, storage, transfer, visualization, and
privacy violations.

* Examples:

— 100 million Call Detail Records per day generated
by Sri Lanka mobile operators

— 45 Terabytes of data from Hubble Telescope
*/QL IRNEas



Why big data? Why now?

e Proximate causes

— Increased “datafication”: Very large sets of
schema-less (unstructured, but processable) data
now available

— Advances in memory technology: No longer is it
necessary to archive most data and work with
small subset

— Advances in software: MapReduce, Hadoop
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If we want comprehensive coverage of the
population, what are the sources of big
data in developing economies?

Administrative data
— E.g., digitized medical records, insurance records, tax records

« Commercial transactions (transaction-generated data)

— E.g., Stock exchange data, bank transactions, credit card records,
supermarket transactions connected by loyalty card number

* Sensors and tracking devices

— E.g., road and traffic sensors, climate sensors, equipment &
infrastructure sensors, mobile phones communicating with base
stations, satellite/ GPS devices

Online activities/ social media
— E.g., online search activity, online page views, blogs/ FB/ twitter posts
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Mobile Network Big Data is only option at this

time

2015 2014 2016
Myanmar 69 2 20.4
Bangladesh 82 10 13.7
Pakistan 67 14 14.3
India 76 18 11.5
Sri Lanka 125 26 19.6
Philippines 120 40 54.6
Indonesia 131 17 33.8
Thailand 125 35 58.9

Sources: https://www.gsmaintelligence.com/;
= . http://www.itu.int/en/ITU-D/Statistics/Documents/publications/misr2015/MISR2015-w5.pdf;
/QL ' R:“I E “=.%  Facebook advertising portal; http://data.worldbank.org/indicator/SP.POP.TOTL




Mobile network big data + other data =2 rich, timely insights
that serve private as well as public purposes

Mobile network big data
(CDRs, Internet access

usage, airtime recharge
records)

Construct Behavioral
Variables

1. Mobility variables
2. Social variables
3. Consumption variables

Other Data Sources

1. Data from Dept. of
Census & Statistics

2. Transportation data

3. Health data

4. Financial data

5. Etc.

i
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Dual purpose insights

Private purposes

. Mobility & location
based services

. Financial services

. Richer customer
profiles

. Targeted

marketing

. New VAS

Public purposes

. Transportation &

Urban planning

. Crises response +

DRR

. Health services
. Poverty mapping
. Financial inclusion




Big data used in the research

Multiple mobile operators in Sri Lanka provided four different types of
meta-data

— Call Detail Records (CDRs): Records of calls, SMS, Internet access
— Airtime recharge records

— No Visitor Location Registry (VLR) data, because they are written over & not
stored

Data sets do not include any Personally Identifiable Information
— All phone numbers are pseudonymized

— LIRNEasia does not maintain any mappings of identifiers to original phone
numbers

Historical, not real time; therefore analyzed in batch mode in a hardware
stack costing < USD 30k

Cover 50-60% of users; very high coverage in Western (where Colombo
the capital city in located) & Northern (most affected by civil conflict)
Provinces, based on correlation with census data

Now also using CCTV footage as well as satellite imagery
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The technology used

* We built our own internal Apache Hadoop cluster:
— 2 Master Nodes & 8 Slave Nodes
— Total of 30 TB disk space with a replication factor of 2

* Distributed processing frameworks:
— Apache Pig
— Apache Hive
— Apache Spark
— Apache Giraph
— Apache Hadoop Yarn
* Tools & libraries:
— Java & Python
— R
— Processing
— QGIS
VQL IRNEasie



The rest of the presentation

Understanding population density & mobility

Population density

Commuting patterns: where do people live and work

Understanding traffic

Mobility changes during important events: Avurudu & Nallur festival
Predicting spatial spread of dengue in Sri Lanka

Implications for public policy

* Understanding land use characteristics

 Measuring urban economic activity

* Understanding Sri Lankan communities

* Analytical challenges

* Team & collaborators

V?LIR NEasia
\ ®



 Understanding population density & mobility
— Population density
— Commuting patterns: where do people live and work
— Understanding traffic
— Mobility changes during important events: Avurudu & Nallur festival
— Implications for public policy
* Predicting spatial spread of dengue in Sri Lanka
 Understanding land use characteristics
 Measuring urban economic activity
* Understanding Sri Lankan communities
* Analytical challenges

e Team & collaborators
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 Understanding population density & mobility
— Population density
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Pictures depict the change in population density at a particular time relative to midnight

Weekday

Population density changes in Colombo region: weekday/ weekend
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Population density changes in Jaffna & Kandy regions on a normal weekday
Pictures depict the change in population density at a particular time relative to midnight
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Our findings closely match results from
expenswe & mfrequent transportatlon surveys
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Estimating population at fine spatial levels

* We first estimate the mobile phone user density in a DSD based on
home locations identified for users:

C " DSD
_ 1 2 : A A, Area of DSD
O = A v, (Cin V/') o, Mobile phone user density in j*" voronoi
! Vi
! A

Area of intersection between C, and v,

(ci N vj)

* We modeled the relationship between MP user density in a DS (o)
with actual population density (p_) as follows:

Pe = (xog

* [ is an adjustment for the variation in mobile phone ownership
between urban and rural regions w.r.t population

 We transform the model to the following format and carry out
population weighted linear regression:

log(p.) =log(a) + plog(cc)

R2-0.93,a -8.6, - 0.805
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MNBD data can give us granular & high-frequency
estimates of population density

DSD population density from DSD population density Voronoi cell population
2012 census estimate from MNBD density estimate from MNBD




 Understanding population density & mobility

— Commuting patterns: where do people live and work
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Methodology

* Based on extracted average diurnal mobility pattern for
population, choose time frames for home and work

— Home time: 21:00 to 05:00
— Work time: 10:00 to 15:00
* Calculate a home and work location for each user:
— Match cell towers to Divisional Secretariat Division (DSD)
— Count each DSD at most once per day.
— Pick the DSD with the largest number of “hits”

— For work consider only weekdays that are not public
holidays
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46.9% of Colombo City’s daytime population
comes from the surrounding regions

A~
Q\V\/U Colombo city is made up of Colombo and

[/f Thimbirigasyaya DSDs
‘
Colombo city 53.1
1. Maharagama 3.7
2. Kolonnawa 3.5
3. Kaduwela 3.3
4. SrilJayawardanapura 2.9
Kotte
5. Dehiwala 2.6
6. Kesbewa 2.5
7. Wattala 2.5
8. Kelaniya 2.1
9. Ratmalana 2.0

10. Moratuwa 1.8



 Understanding population density & mobility

— Understanding traffic
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22



Understanding traffic conditions

 CDR dataisn’t good enough to understand traffic
conditions

 CCTV footage gives us a better chance of
understanding traffic flow (volume, speeds)
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Haar-feature classification Deep learning based classifier

71 LIRNEasia
.\ Pro-poor. Pro-market.

23



 Understanding population density & mobility

— Mobility changes during important events: Avurudu & Nallur festival
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People travel greater distances during Avurudu
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More people travel greater distances
during Avurudu
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B 65t0-7%
B -7t039%
B 39t087%
B 87t0147%
B 147t0281%

Net inflow during Avurudu
weekend

With the exception of Ampara, more Colombo
city residents travelled to other DSDs during
Avurudu, as compared to other weekends
(some examples below):

*  Nuwara Eliya: 315%

* Kotmale: 233%

*  Town & Gravets (Trincomalee): 100%

* Udunuwara: 93%

* Kalutara: 90%

* Jaffna: 80%

* Galle Four Gravets: 77%

* Gangawata Korale: 71%

* Attanagalla: 71%

* Mirigama: 66% 57
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Nallur festival in Jaffna
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Visitors during Nallur festival: where they came from

;‘V’/

%-age of visitors 23.53 22.99 11.83 7.57
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/QLIRNEaSIa o

Pro-poor. Pro-market.




Going deeper: where they came from

Average # of visitors (%)
b/w 15t June — 315t Oct

Thimbirigasyaya 6.88%

Colombo
Dehiwala
Rathmalana

Mannar

B

3.08%

4.25%

1.24%

2.38%
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visitors (%)
53.78%
53.22%
50.71%

43.65%

33.14%

P
Source Distribution (%)
[ 0.00%-0.20%
[ 0.20%-0.65%
B 0.65% - 1.40%
Bl 1.40%-2.45%
B 2.45%-16.60%
Bl 16.60%-31.30%

s




Where were they during the festival?

%-age increase in visitors during festival
compared to an average day

[netd]

.....

People days density distribution during -

festival period
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Map data ©2015 Google
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 Understanding population density & mobility

— Implications for public policy
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Implications for public policy

e Population maps and mobility/migration patterns are
essential policy tools

— Included in most census and household surveys

* MNBD allows us to improve & extend measurement

— Large sample sizes
— Very frequent measurement

* More precise measures
— Commuting/ seasonal/ long-term migration
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Implications for public policy

Improve planning for “spiky” events that create pressure on
government and privately supplied services

— Humanitarian response to disasters
— Special events/holidays

Urban & transportation planning

— Can identify high volume transport corridors to prioritize for provision
of mass transit

— Map de facto municipal boundaries
Health policy

— Mobility patterns that can help respond to spread of infectious
diseases (e.g., dengue)

X
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 Understanding population density & mobility
— Population density
— Commuting patterns: where do people live and work
— Understanding traffic
— Mobility changes during important events: Avurudu & Nallur festival
— Implications for public policy
* Predicting spatial spread of dengue in Sri Lanka
 Understanding land use characteristics
 Measuring urban economic activity
* Understanding Sri Lankan communities
* Analytical challenges

e Team & collaborators
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Predicting spatial spread of dengue in Sri Lanka

Comparing predicted & actual dengue outbreaks for Dehiwala MOH region in 2014

variable

# of cases

predicted

cleanedCases

Week

Such analyses will be very important should any cases of zika be detected in Sri
Lanka

Initials results are being improved further in partnership with the University of
Moratuwa and the Epid Unit of the Ministry of Health



* Understanding population density & mobility
— Population density
— Commuting patterns: where do people live and work
— Understanding traffic
— Mobility changes during important events: Avurudu & Nallur festival
— Implications for public policy
* Predicting spatial spread of dengue in Sri Lanka
* Understanding land use characteristics
 Measuring urban economic activity
* Understanding Sri Lankan communities
* Analytical challenges

e Team & collaborators
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Hourly loading of base stations reveals
distinct patterns
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 We can use this insight to group base stations into different
groups, using unsupervised machine learning techniques

72L IRNEasia
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Methodology

The time series of users connected at a base station contains variations,

that can be grouped by similar characteristics
A month of data is collapsed into an indicative week (Sunday to
Saturday), with the time series normalized by the z-score

Principal Component Analysis(PCA) is used to identify the discriminant
patterns from noisy time series data

l

e Each base station’s pattern is filtered into 15 principal components (covering

95% of the data for that base station)

Using the 15 principal components, we cluster all the base stations into
clusters in an unsupervised manner using k-means algorithm

’/?L'RNEJJS.‘J
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Three spatial clusters in Colombo District

e Cluster-1 exhibits patterns
consistent with
commercial area

e Cluster-3 exhibits patterns
consistent with residential
area

e Cluster-2 exhibits patterns
more consistent with
mixed-use

§/1L IRNEasia
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Our results show Central Business District (CBD)

in Colombo city has expanded

TYAGAMA
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Small area in NE corner of Colombo District
classified as belonging to Cluster 1?

Seethawaka Export
Processing Zone

§/? LIRNEasia
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We use silhouette coefficients to understand the
quality of the clustering

. Sllhquette coefﬁc.lent indicates Cluster Avg. Silhouette
quality of clustering Coefficient

b(i) — a(z) 1 - Commercial 0.46
s) = ax{a(d) b(1)]} DI — 0.36
3 — Mixed-use 0.22

a(i) - average distance of i with all other
data within the same cluster

b(i) - average distance of i with all other
data within the neighboring cluster

 Based on the s-values, Cluster 3 is
the least coherent amongst the
three

7?L IRNEasia
\ Pro-poor. Pro-market 43




\

Commercial to Residential spectrum

J
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But using just MNBD gets us only so far

Analyses currently being improved using
machine vision techniques on satellite data, as
well as using Foursquare data

4 different sources of data are being used to
collectively give a better timely picture of land
use

— Existing ground truth survey data (data often old
and geographically sparse)

— MNBD
— Satellite imagery

— Foursquare

7?L IRNEasia
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Implications for urban policy

e Almost real-time monitoring of urban land use

— We are currently working on understanding finer temporal
variations in zone characteristics (especially the mixed-use
areas)

 Can complement infrequent surveys & align master
plan to reality
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Final results will help a better comparison

2013 MINBD analyses

72LIRNEasia
-
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of reality against plans

2020 UDA plan

2010 Survey Dept. Land
Use Map

Land Use - 2010 (Survey Department)

Legend
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 Understanding population density & mobility
— Population density
— Commuting patterns: where do people live and work
— Understanding traffic
— Mobility changes during important events: Avurudu & Nallur festival
— Implications for public policy
* Predicting spatial spread of dengue in Sri Lanka
 Understanding land use characteristics
 Measuring urban economic activity
* Understanding Sri Lankan communities
* Analytical challenges

e Team & collaborators
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What does mobility tell us about
economic activity?

Economic activity =
(number of workers) x (productivity per worker)

Observed Must be inferred

*\We assume more productive regions are more attractive

destinations
eCommuting patterns emerge from the trade-off between

attractiveness of a workplace and the cost of getting there

=LIRNEasia
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Example of commuting flows from one origin location

x 2"

Biyagama
Export
Processing
Zone
\/lﬂ Low Commuting High Commuting 0

Flows Flows



Theoretical model outline

Agent w at residential location i chooses work location j offering

wage w; and at distance d;;, and w has effective income at j
WjZijw
Yijw = d

ij
where z;;,, is iid Fréchet-distributed random productivity shock.

Commuting flow probabilities:

N (w; /du)
N ZS(WS/dlS)E

We estimate origin-constrained gravity model:

log(m;;) = 1; + elog(dy;) — 1; + &




We can develop new proxy measures of economic activity

Economic activity

High economic
activity

Low economic
activity

§/QL IRNEasia




Economic activity/km?

0 15 3 6 Km

=N .
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Model validation using
nightlight data from satellites

Nightlights Mean income

0 15 3 6 Km
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Incorporating other data can give
further insights

Household data: Census/HIES/LFS
Industrial data: ASI, Industrial Census

Nightlights  Household data Industrial Data
Geographic variation / / /
Time variation earl quarterly/ early/decade
yearty 2-3yrs/decade yearly
T Employment
Relevant variables (un)employment, proy .
. capital intensity
skill levels
Improving Improving &
|deal for: .
Measure Validation

— s
7?LIR NEasia
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Benefit of an improved framework for
modeling economic activity

* Increase the coverage of existing surveys (both
temporal and geographic)

— By calibrating with household, industry census and survey
data, when available

— Then, mobile data can be used to predict/extrapolate for
time periods and regions without survey data

e Can capture informal economic activity

— Other research suggests informal economy is almost 30%
of GDP in Sri Lanka
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Implications

*A new measure of economic activity from

commuting flows (from mobile phone data)
Significant potential use for policy and research.
*Fine temporal and spatial resolution.

*Preliminary validation with the best available data
looks promising

*Additional data (Industrial, Household) will allow
measure to be taken to next level

7?L|R NEasia
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 Understanding population density & mobility
— Population density
— Commuting patterns: where do people live and work
— Understanding traffic
— Mobility changes during important events: Avurudu & Nallur festival
— Implications for public policy
* Predicting spatial spread of dengue in Sri Lanka
 Understanding land use characteristics
 Measuring urban economic activity
* Understanding Sri Lankan communities
* Analytical challenges

e Team & collaborators
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Prima facie, Colombo city (Colombo & Thimbirigasyaya DSDs)
seems to be the center of
Sri Lanka’s social network

e Each link represents the
raw number of outgoing
and incoming calls

between two DSDs

e Divisional Secretariat
Division (DSD) is a third
level administrative
division; 331 in total in LK

§ asia | | .
DA Low M > High

No. of calls




A different picture emerges when call volume is
normalized by population

No.of calls (DSD1,DSD;)

Normalized calls (DSDy, DSD,) = Population (DSD,) X Population (DSD,)

e Strongly connected regional
networks become visible

PG Low > High g
No. of calls



ldentifying communities: methodology

e The social network is segregated such that
overlapping connections between
communities are minimized

e Strength of a community is determined by
modularity

J Modularity Q

(edges inside the community) —

(expected number of edges inside the community)

Q= —2(4, Xk 22)3(¢, €,

ab

M. E. J.-Newman, Michele-Girvan, “Finding and evaluating community structure in networks”, Physical Review E, APS, Vol. 69, No. 2, p. 1-16, 204.

V?LIR NEasia
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We find Sri Lanka is made up of 11 communities

= .
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How do communities match existing administrative divisions?

‘" _communities 63



With some exceptions, boundaries of
communities differ from existing
administrative divisions

* Northern (1), Uva (10) and Southern (11) communities most
similar to existing provincial boundaries; but 11 takes
Embilipitiya and Kataragama

* Colombo district is clustered as a single community (7)

* Gampaha merges with coastal belt of North Western Province
(2) and Kalutara (8) is its own community
— What does this mean for Western Province Megapolis?
e Batticaloa & Ampara districts of the Eastern Province merge
with the Polonnaruwa district of North Central Province to
form its own distinct community (6)

— Possibly reflective of economic linkages since this is the rice belt
of Sri Lanka

— Does economics override ethnicity?

72L|RNEJS/H
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More differences appear when we zoom in further

* The littoral regions form
their own distinct sub-
communities

* The northern part of
Colombo city forms a
community with Wattala,
across the Kelani river

* |Ingeneral, rivers no
longer form natural
boundaries of
communities

Pro-poor. Pro-market.
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 Understanding population density & mobility
— Population density
— Commuting patterns: where do people live and work
— Understanding traffic
— Mobility changes during important events: Avurudu & Nallur festival
— Implications for public policy
* Predicting spatial spread of dengue in Sri Lanka
 Understanding land use characteristics
 Measuring urban economic activity
* Understanding Sri Lankan communities
* Analytical challenges

e Team & collaborators
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Addressing analytical challenges

Challenge Solution(s) __________

Data is biased towards  Understand and adjust for
frequent users selection bias
Data sparsity * Interpolation techniques

* Probability based models

Different tower densities ¢ Different scale of analyses
depending on region

Validating results e Using other data sources, e.g.,
data from Dept. of Census and
Statistics, transportation
survey data
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— Population density
— Commuting patterns: where do people live and work
— Understanding traffic
— Mobility changes during important events: Avurudu & Nallur festival
— Implications for public policy
* Predicting spatial spread of dengue in Sri Lanka
 Understanding land use characteristics
 Measuring urban economic activity
* Understanding Sri Lankan communities
* Analytical challenges
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