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Introduction  
It   may   surprise   the   non-computing   world   that,   for   all   the   talk   of   algorithms,   computer  
science   actually   offers   multiple   definitions   of   what   an   algorithm   is   (Knuth,   1968;   Markov,  
1954;   Minsky,   1967;   Stone,   1972).   Donald   Knuth—the   legendary   mathematician,   Turing  
Award   winner   and   “father   of   the   analysis   of   algorithms”   (Karp,   1986)—once   defined   an  
algorithm   as   having   these   five   characteristics:  

● Finiteness.    "An   algorithm   must   always   terminate   after   a   finite   number   of   steps."  

● Definiteness.    "Each   step   of   an   algorithm   must   be   precisely   defined;   the   actions   to   be  
carried   out   must   be   rigorously   and   unambiguously   specified   for   each   case."  

● Input.    "...quantities   which   are   given   to   it   initially   before   the   algorithm   begins.   These  
inputs   are   taken   from   specified   sets   of   objects."  

● Output.    "...quantities   which   have   a   specified   relation   to   the   inputs."  

● Effectiveness.    "...   all   of   the   operations   to   be   performed   in   the   algorithm   must   be  
sufficiently   basic   that   they   can   in   principle   be   done   exactly   and   in   a   finite   length   of  
time   by   a   man   using   paper   and   pencil"   (Knuth,   1968).  

A   cursory   glance   at   this   criteria   reveals   the   nature   of   algorithms   of   yesteryear.   They   were  
generally   formulaic—a   human   was   responsible   for   every   piece   of   the   algorithm;   and  
therefore   it   was   accepted   that   a   human   being   could    explain    what   an   algorithm   did,   right  
down   to   being   able   to   do   the   calculation   themselves;   and   that   there   was   nothing   in   said  
algorithm   that   hadn’t   been   put   there   by   its   designer.  

However,   it   was   soon   recognized   that   some   problems   were   too   complex   to   be   solved  
deterministically.   For   instance,   recognizing   a   face:   it   is   difficult   to   precisely   describe,  
element   by   element,   what   a   face   looks   like.   A   more   appropriate   approach   to   solving   these  
complex   problems   was   to   construct   algorithms   that   can   learn   from   data—machine   learning.  

With   machine   learning   came   the   shedding   of   the   old,   explainable   design   process:   instead,  
an   architecture   would,   over   many   training   cycles,   self-adapt   and   develop   its   own   paths   to  
produce   the   kind   of   output   or   task   fitness   required.   Even   relatively   old   and   primitive   efforts  
(by   computer   science   time)   produced   solutions   that   defied   explanation:   for   example,   Alan  
Thompson’s   (1996)   experiment   in   trying   to   get   circuits   to   design   themselves   produced  
circuits   that   did   the   job   with   approximately   a   third   of   the   resources   they   were   supposed,  
with   components   that   sometimes   weren’t   connected   to   each   other,   and   most   likely   relied   on  
magnetic   flux   in   the   circuit   to   work   -   something   no   human   designer   could   have   predicted.  
This   is   the   wave   of   what   Andrej   Karpathy   (2017)—director   of   AI   at   Tesla—calls   “Software  
2.0”:   an   increasingly   prevalent   stack   that   offers   superior   functionality   in   some   domains   but  
with   the   caveat   that   the   core   algorithm   itself   is   difficult   to   explicitly   define   or   design.  
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Our   observation   is   that   sophisticated   machine   learning   violates   at   least   three   of   Knuth’s  
principles:    finiteness,   definiteness    and    effectiveness.    We   are   long   since   past   the  
pencil-and-paper   stage.   

Naturally,   this   has   led   to   many   concerns   in   the   development   field,   particularly   when  
machine   learning   (often   referred   to   offhand   as   AI)   interacts   with   socio-legal   systems.   Key  
among   these   concerns   is   the   subject   of   this   paper:  

What   do   we   do   about   bias   in   algorithms   we   don’t   understand?  
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What   is   Algorithmic   Bias   in   a   Machine   Learning  
World?  
Researchers   at   the   Brookings   Institute,   concerned   with   much   the   same   issues   that   we   are,  
broadly   define   bias   as   “outcomes   which   are   systematically   less   favorable   to   individuals  
within   a   particular   group   and   where   there   is   no   relevant   difference   between   groups   that  
justifies   such   harms”   (Lee   et   al.,   2019).  

In   our   observation   and   work,   machine   learning   presents   us   with   three   broad   avenues   by  
which   such   biases   may   manifest   in   systems:  

Task-Fitness   Bias  
Machine   learning   systems   (or   “AI”)   are   not   one-size-fits-all   entities.   However,   as   Andrej  
Karpathy   (2017)   points   out,   the   general   “stack”   is   much   more   homogenous   than   the  
previous   generation   of   hand-built   algorithms.   This   nature   makes   it   possible   to   adapt   a  
system   trained   for   one   task   to   another,   as   long   as   they   are   broadly   within   the   same   domain:  
for   example,   Open   AI’s   GPT-2,   which   gained   much   attention   for   its   realistic,   fanciful  
generation   of   news   articles   (Radford   et   al.,   2019),   can   be   quite   easily   retrained   to   write  
poetry   instead   (Wijeratne,   2019).   

However,   such   task-fitness   needs   to   be   examined   very   seriously   before   implementation,   as  
the   recent   PREDPOLL   uproar   shows   (Haskins,   2019):   an   algorithm   based   on   earthquake  
modelling   should   not   be   used   to   detect   crime.   Even   within   domains,   vestiges   of   the   old  
system   will   always   remain;   and   therefore   one   potential   source   of   bias   is   from   a   system  
introducing   artefacts   from   a   task   to   which   it   had   previously   been   trained.   

Data-Driven   Bias  
Data-driven   bias   is   the   centerpiece   of   most   conversations,   and   the   most   easily   understood.  
This   occurs   when   the   data   fed   into   a   machine   learning   system   encapsulates   bias   found   in  
human   societies.   It   can   materialize   in   the   form   of   incorrectly   correlating   certain   concepts  
with   certain   demographics;   for   instance,   if   we   were   to   train   an   algorithm   on   what   a   physicist  
looks   like   using   images   of   historical   physicists,   it   would   be   biased   towards   picking   men,  
because   in   the   past,   due   to   the   shape   and   nature   of   patriarchal   influence,   physicists   have  
been   predominantly   male.   

One   of   the   longest-running   and   most   visible   examples   of   this   has   indeed   been   in   large  
systems   like   the   Google   search   engine,   where   user   interactions   and   flawed,   pre-existing   data  
form   rich   datasets   that   contains   such   biases   (Noble,   2018),   often   resulting   in   racially  
charged   search   data.   Facebook,   for   example,   produces   echo   chambers   (Hosanagar,   2016).  
Other   biases   are   sometimes   surreal:   Microsoft’s   AI   chatbot   “Tay”,   for   example,   which  
learned   from   user   interaction,   started   mimicking   racist   content   sent   to   it   by   the   community  
that   interacted   with   it   (Vincent,   2016),   while   a   similar   Microsoft   chatbot   “Rinna”,   that  
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interacts   with   a   different   community,   started   exhibiting   the   language   of   depression   (Brown,  
2016).  

Google   (2017)   has   suggested   the   following   subdivisions   for   data-driven   bias:  

● Interaction   bias.    The   users   bias   the   algorithm   based   on   the   way   they   interact   with  
it—“...like   this   recent   game   where   people   were   asked   to   draw   shoes   for   the   computer.  
Most   people   drew   [standard   shoes].   So   as   more   people   interacted   with   the   game,   the  
computer   didn't   even   recognize   [high   heels].”  

● Latent   bias.    The   algorithm   incorrectly   correlates   concepts   with   certain  
demographics—“...for   example,   if   you   were   training   a   computer   on   what   a   physicist  
looks   like,   and   you're   using   pictures   of   past   physicists,   your   algorithm   will   end   up  
with   a   latent   bias   skewing   towards   men.”  

● Selection   bias.    The   algorithm   favours   certain   demographics   at   the   cost   of  
others—“...say   you're   training   a   model   to   recognize   faces.   Whether   you   grab   images  
from   the   internet   or   your   own   photo   library,   are   you   making   sure   to   select   photos  
that   represent   everyone?”  

However,   we   believe   that   this   additional   layer   of   categorization   serves   no   purpose   other  
than   to   illustrate   the   mechanisms   by   which   the   training   dataset   can   be   skewed;   the  
overarching   problems   are   common   across   all   three   subcategories   and   the   categories   are   not  
mutually   exclusive.  

Overfitting  
This   occurs   when   the   relentless   pursuit   of   accuracy   in   training   produces   a   machine   learning  
model   that   performs   flawlessly   in   a   test   environment,   but   poorly   in   the   real   world,  
introducing   large   biases   in   decision-making   in   a   system   that   may   seem   perfect   “on   paper”.  
This   is   referred   to   as   overfitting   in   computer   science   and   mathematics   (Cawley   &   Talbot,  
2010).  

These   are   broad   categories.   Note   that   much   more   detailed   taxonomies   of   bias   exist   (Mehrabi  
et   al.,   2019),   but   these   overarching   divisions   are   useful   for   discussion   in   non-technical  
settings.  
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What   Happens   When   These   Biases   Affect  
Systems?  
Such   algorithms   influence   many   aspects   of   our   lives,   from   the   news   articles   we   read,   the  
videos,   shows   and   movies   we   watch   to   the   people   we   interact   with   and   the   results   of   our  
applications   for   jobs,   loans,   education,   etc.   (Pasquale,   2015).  

Kate   Crawford   (2017)—co-founder   of   the   AI   Now   Institute—suggested   that   the   negative  
impacts   of   algorithmic   bias   can   be   broadly   categorized   into   allocative   and   representational  
harms.   We   find   this   a   useful   framework   for   examining   the   impacts   of   systems:  

Allocative   Harm  
An   allocative   harm   is   when   an   algorithm   withholds   an   opportunity   or   resource   from   a  
certain   demographic.   It   is   characterized   as;   immediate:   the   result   of   an   instantaneous  
decision,   discrete:   easily   quantifiable,   and   transactional:   the   result   of   a   specific   transaction.  
Subcategories   of   allocative   harms   include:  

● Stereotyping.    An   oversimplified   idea   of   something   that   incorrectly   correlates   certain  
concepts   with   certain   demographics.   For   instance   correlating   a   certain   ethnicity   with  
a   higher   socioeconomic   status.  

● Recognition.    A   certain   demographic   is   unrecognised   by   the   algorithm.   For   instance   a  
facial   recognition   system   that   has   difficulty   recognising   the   faces   of   minority   groups.  

● Denigration.    Assigning   culturally   offensive   or   inappropriate   labels.   For   instance,  
labelling   Muslims   as   terrorists.  

● Underrepresentation.    Underrepresenting   a   certain   demographic.   For   instance,   a  
Google   image   search   of   “doctor”   yielding   predominantly   images   of   white   males.  

● Ex-nomination.    When   the   majority   demographic   becomes   accepted   as   the   norm   and  
the   deviation   of   minority   demographics   from   this   norm   becomes   evident.   For  
instance,   a   person   from   Sri   Lanka   is   assumed   to   be   of   Sinhalese   ethnicity   and  
Buddhist   religious   association.  

Representational   Harm  
A   representational   harm   is   when   an   algorithm   reinforces   the   subordination   of   certain  
demographics   along   the   lines   of   race,   class,   gender,   etc.   It   is   characterised   as;   long   term:   a  
process   that   affects   attitudes   and   beliefs,   difficult   to   formalise   and   diffuse:   the  
consequences   are   vague   and   indirect,   and   cultural:   the   result   of   depictions   of   humans   and  
society.  

A   prime   example   of   representational   harm   was   when   Google   Photos   incorrectly   labelled   an  
image   of   a   black   couple   as   “gorillas”   (Alciné,   2015).   Without   context,   it   may   seem   like   a  
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harmless   error.   However,   if   the   history   of   blacks   being   enslaved   and   considered   as   less   than  
human   for   centuries   is   taken   into   account,   it   is   evident   how   damaging   such   an   error   can   be.  

Evaluating   the   impact   of   algorithmic   bias   from   a   different   perspective—minimising   bias   in  
algorithms   can   in   turn   curb   bias   in   society   by   means   of   a   feedback   loop.   Consider   the  
hypothetical   case   of   a   young   woman   aspiring   to   become   a   computer   programmer.  
Statistically,   computer   programmers   are   predominantly   male,   and   a   Google   image   search   of  
“computer   programmer”   will   reflect   this   skew.   This   may   discourage   the   young   woman   from  
pursuing   such   a   career   path,   thus   reinforcing   the   stereotype   that   computer   programmers   are  
male.   However,   if   the   algorithm   were   to   be   adjusted   to   present   a   larger   portion   of   female  
computer   programmers   than   what   is   actually   present   in   society,   then   the   young   woman   may  
feel   motivated   to   continue   along   that   career   trajectory,   thus   mitigating   the   stereotype   in  
society.  
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What   is   Fair?  
Regardless   of   the   method   used,   addressing   the   matter   of   algorithmic   bias   involves   the  
singular   goal   of   making   the   algorithm   fair.   The   predominant   conversational   thrust   in  
development   is   to   insist   that   biases   be   corrected   and   flawed   algorithms   retired   or   controlled.   

However,   this   is   a   more   complex   ideal   than   one   would   suppose.   The   definition   of   what   is  
“fair”   is   obscure,   and   there   is   more   than   one   apt   definition,   which   would   change   contingent  
on   the   lens   by   which   a   situation   is   viewed.   One   of   the   most   useful   lenses   we   have   come  
across   is   Kleinberg   et   al.’s   (2016)   three   notions   of   algorithmic   fairness.   Consider   the  
following   scenario:  

● The   purpose   of   the   algorithm   is   to   make   a    binary   prediction :   positive   or   negative.  

● Each   member   of   the   population   has   an   associated    feature   vector —a   set   of  
variables—according   to   which   the   prediction   is   made.  

● Each   member   is   assigned   to   one   of   two    groups ,   with   respect   to   which   we   would   like  
the   algorithm   to   be   unbiased.  

● Within   each   group,   members   are   divided   into    bins    based   on   their   feature   vectors.  

● Each   bin   is   labelled   with   a    score    that   represents   the   probability   of   a   positive   outcome  
for   each   member   in   that   bin.  

Then   the   three   notions   of   fairness   were   suggested   as   follows:  

● Calibration   within   groups.    For   each   group   and   each   bin   the   expected   number   of  
members   with   a   positive   outcome   should   be   proportional   to   the   score   assigned   to  
that   bin.  

● Balance   for   the   positive   class.    The   average   score   of   members   with   a   positive   outcome  
should   be   the   same   for   each   group.  

● Balance   for   the   negative   class.    The   average   score   of   members   with   a   negative   outcome  
should   be   the   same   for   each   group   (Kleinberg   et   al.,   2016).  

Kleinberg   et   al.   (2016)   then   continued   to   argue   that   no   method   can   satisfy   all   three   notions  
of   fairness   simultaneously,   with   the   exception   of   highly   constrained   special   cases:  

● Perfect   prediction.    For   each   feature   vector,   we   know   for   certain   what   the   outcome   is.  

● Equal   base   rates.    The   two   groups   have   the   same   fraction   of   members   that   have   a  
positive   outcome.  

Furthermore,   even   satisfying   all   three   notions   approximately   would   require   an   approximate  
version   of   these   special   cases.   It   is   helpful   to   illustrate   these   claims   with   a   real   world  
example:  
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Case   Study:   Northpointe’s   COMPAS   Recidivism   Algorithm  

One   of   the   most   powerful   case   studies   we   can   use   is   that   of   Northpointe:   a   Michigan-based  
company   that   developed   an   algorithm   for   predicting   recidivism,   named   Correctional  
Offender   Management   Profiling   for   Alternative   Sanctions   (COMPAS).   The   algorithm   was  
used   to   assist   in   making   judicial   decisions.  

 
Figure   1:    The   percentage   of   black   and   white   defendants — who    did   not    ultimately   recidivate  

within   two   years — assigned   to   a   COMPAS   risk   score.  

 
Figure   2:    The   percentage   of   black   and   white   defendants — who    did    ultimately   recidivate   within  

two   years — assigned   to   each   COMPAS   risk   score.  
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A   team   from   ProPublica—Julia   Angwin,   Jeff   Larson,   Surya   Mattu   and   Lauren  
Kirchner—published   what   was   at   the   time   a   groundbreaking   piece   of   public   journalism:  
using   two   years   worth   of   ground   truth   data,   they   accused   the   algorithm   of   being   biased  
against   blacks,   stating   that   of   the   defendants   that    did   not    ultimately   recidivate,   blacks   were  
more   than   twice   as   likely   to   be   classified   as   medium   to   high   risk   (risk   score   of   5–10)   by   the  
algorithm   than   whites.   Conversely,   of   the   defendants   that    did    ultimately   recidivate,   whites  
were   more   than   twice   as   likely   to   be   classified   as   low   risk   (risk   score   of   1–4)   by   the   algorithm  
than   blacks   (Angwin   et   al.,   2016).   This   represents   a   breach   of   the    balance   for   the   negative  
class   and   the    balance   for   the   positive   class    respectively.  

 
Figure   3:    The   percentage   of   black   and   white   defendants—assigned   to   each   COMPAS   risk  

score—that   recidivated   within   two   years.  

Northpointe   responded   arguing   that   within   each   bin,   the   algorithm   was   equally   predictive  
for   both   blacks   and   whites   (Dieterich   et   al.,   2016).   This   represents   a   compliance   of   the  
calibration   within   groups .  

Table   1:    The   base   rates   of   recidivism   within   two   years   for   blacks   and   whites.  

Ethnicity   No.   of   Defendants    No.   of   Recidivists    Pct.   of   Recidivists   (%)   

Blacks   3,696    1,901   51.4  

Whites   2,454    966    39.5   

Figures   1,   2   and   3   illustrate   the   same   data,   sliced   differently   to   evaluate   Kleinberg   et   al.’s  
(2016)   three   notions   of   fairness:    balance   for   the   negative   class,   balance   for   the   positive   class,  
and    calibration   within   groups,    respectively.   In   the   absence   of    equal   base   rates    (see   Table   1)  
and    perfect   prediction,    it   is   straightforward   to   see   how   adjusting   the   algorithm   to   balance   for  
one   notion   would   disrupt   the   intricate   balance   of   another.    
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How   do   we   Tackle   These   Problems?  
Upon   first   glance   the   solution   seems   straightforward:   simply   remove   any   information   in   the  
training   dataset   pertaining   to   the   sensitive   feature   with   respect   to   which   we   do   not   want   the  
algorithm   to   be   biased.   However,   it   was   found   that   the   algorithms   were   able   to  
probabilistically   infer   the   sensitive   feature   using   related   information.   Ergo,   this   approach  
saw   little   to   no   success.  

One   such   case   is   Northpointe’s   COMPAS   algorithm   for   predicting   recidivism,   discussed  
previously.   Despite   having   removed   any   information   related   to   race,   the   algorithm   was   able  
to   infer   race   from   other   socioeconomic   information   such   as   income,   educational  
background,   type   of   residence,   etc.   Angwin   et   al.   (2016)   found   the   algorithm   to   be   biased  
against   blacks:   of   the   defendants   that   did   not   ultimately   reoffend,   blacks   were   more   than  
twice   as   likely   to   be   classified   as   medium   or   high   risk   by   the   algorithm   than   whites.   

Following   this   discovery,   several   methods   for   tackling   algorithmic   bias   have   been   theorised  
and   attempted.   They   can   be   broadly   classified   as   either   correcting   the   bias   in   the   training  
process,   or   correcting   the   bias   in   the   training   dataset.  

Correcting   the   Training   Process  
We   previously   pointed   out   that   in   machine   learning,   the   core   algorithm   is   hard   to   define.  
However,   the   designer   can   train   the   algorithm   by   adjusting   the   optimization   criteria   to  
include   certain   fairness   criteria;   but   now   we   must   enter   turf   that,   once   again,   requires   hard  
decisions   and   ethical   quandaries.  

In   2016,   a   team   of   computer   scientists,   with   Moritz   Hardt   as   the   first   author,   explored   some  
commonly   used   optimization   criteria,   and   introduced   two   of   their   own:   equal   opportunity  
and   equal   odds.  

● Maximum   profit.    This   does   not   involve   any   fairness   criteria   and   uses   a   different  
threshold   for   each   group   such   that   utility   is   maximised.  

● Race   blind.    This   uses   a   single   threshold   across   all   groups.  

● Demographic   parity.    This   uses   a   different   threshold   for   each   group   such   that   the  
fraction   of   group   members   that   are   selected   is   the   same   across   all   groups.  

● Equal   opportunity.    This   uses   a   different   threshold   for   each   group   such   that   the  
fraction   of   group   members   with   a   positive   outcome   that   are   selected   is   the   same  
across   all   groups.  

● Equal   odds.    This   uses   two   different   thresholds   for   each   group   such   that   the   fraction  
of   group   members   with   a   positive   outcome   that   are   selected   is   the   same   across   all  
groups   and   the   fraction   of   group   members   with   a   negative   outcome   that   are   selected  
is   the   same   across   all   groups   (Hardt   et   al.,   2016).  
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Hardt   et   al.   (2016)   then   compared   these   optimization   criteria   in   the   context   of   FICO   credit  
scores   using   a   TransUnion   TransRisk   dataset   from   2003.   Given   that   a   threshold   FICO   score  
of   620   is   commonly   used   for   prime-rate   loans   and   this   corresponds   to   a   loan   default   rate   of  
18%:  

● The    maximum   profit    model   uses   a   different   threshold   FICO   score   for   each   group   such  
that   82%   of   group   members   do   not   default.   As   one   would   expect,   this   model  
disadvantages   blacks   and   hispanics.  

● The   race    blind   model    uses   a   single   threshold   FICO   score   across   all   groups   such   that  
82%   of   the   population   do   not   default.   This   model   realises   99.3%   of   the   profit  
available   under   the   maximum   profit   model   and   still   disadvantages   blacks   and  
hispanics.  

● The    demographic   parity    model   uses   a   different   threshold   FICO   score   for   each   group  
such   that   the   fraction   of   group   members   that   qualify   for   a   loan   is   the   same   across   all  
groups.   This   model   realises   69.8%   of   the   profit   available   under   the   maximum   profit  
model   and   results   in   reversing   the   bias   such   that   whites   and   asians   are  
disadvantaged.  

● The    equal   opportunity    model   uses   a   different   threshold   FICO   score   for   each   group  
such   that   the   fraction   of   non-defaulting   group   members   that   qualify   for   a   loan   is   the  
same   across   all   groups.   This   model   realises   92.8%   of   the   profit   available   under   the  
maximum   profit   model.  

● The    equal   odds    model   uses   two   different   threshold   FICO   scores   for   each   group   that  
the   fraction   of   non-defaulting   group   members   that   qualify   for   a   loan   and   the   fraction  
of   defaulting   group   members   that   qualify   for   a   loan   is   the   same   across   all   groups.  
Any   group   member   above   both   thresholds   qualifies   for   a   loan,   any   group   member  
below   both   thresholds   does   not   qualify   for   a   loan,   and   any   group   member   in   between  
both   thresholds   has   a   corresponding   probability   to   qualify   for   a   loan.   This   model  
realises   80.2%   of   the   profit   available   under   the   maximum   profit   model.  

Hardt   et   al.   (2016)   elaborated   that   the   algorithm   functions   more   accurately   for   majority  
groups   than   minority   groups   simply   due   to   the   abundance   of   training   data.   The   equal  
opportunity   model   is   able   to   utilise   the   algorithm’s   higher   accuracy   for   majority   groups,  
however   the   equal   odds   model   constrains   the   algorithm   to   function   as   poorly   as   it   does   for  
minority   groups   for   all   groups.  

Whilst   this   appears   to   be   a   promising   framework,   it   is   not   without   critique:   it   requires   the  
selection   of   a   type   of   bias,   a   trade-off   that   will   have   to   be   made.   Liu   et   al.   (2018)   have   gone  
further,   arguing   that   when   considering   the   system   as   a   whole,   of   which   the   algorithm   is  
simply   a   small   part   of,   including   fairness   criteria   in   the   optimisation   criteria   may   result   in  
harming   the   very   groups   it   intends   to   protect   by   way   of   a   delayed   feedback   loop.   Once   again,  
adopting   the   context   of   FICO   credit   scores,   if   a   minority   group   member   receives   a   loan   after  
the   introduction   of   fairness   criteria   that   would   not   have   been   granted   otherwise   and   ends   up  
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defaulting   on   the   loan,   then   his   or   her   credit   score   would   decrease,   thus   making   it   more  
difficult   to   acquire   a   loan   in   the   future.  

Correcting   the   Training   Dataset  
Correcting   training   data   involves   identifying   all   the   different   demographics   and   skews  
present   in   the   training   dataset   and   then   adjusting   the   dataset   to   compensate.   This   approach  
has   its   proponents:   researchers   such   as   Chen   et   al.   (2018)   have   argued   that   it   is   better   to  
address   the   issue   of   bias   by   correcting   the   dataset   rather   than   correcting   the   algorithm,   as  
the   latter   involves   a   tradeoff   in   accuracy   that   is   often   unacceptable   for   sensitive   applications  
such   as   healthcare.   Feldman   et   al.   (2015)   claimed   that   bias   prone   datasets   can   be   identified  
by   building   an   algorithm   that   uses   people’s   nonsensitive   features   to   predict   their   sensitive  
features   (ethnicity,   sex,   etc.).   The   accuracy   with   which   these   sensitive   features   can   be  
predicted   correlates   to   the   extent   to   which   an   algorithm   trained   using   the   dataset   can   be  
biased;   they   proposed   methods   by   which   a   dataset   can   be   “repaired”   so   as   to   result   in   an  
unbiased   algorithm   yet   retain   relevant   information.   

Once   again,   these   approaches   involve   ethically   difficult   choices   to   be   made.   Logically,   to  
understand   the   bias   against   minorities   and   the   underprivileged,   certain   protected   classes   of  
data—such   as   race   and   gender   identity—must   be   examined;   and   for   that,   they   must   first   be  
collected   in   a   way   that   minimizes   harm.   Secondly,   this   comes   back   to   the   notions   of   what  
fairness   is,   something   which   will   see   some   cases   that   are   highly   contextual—like   credit  
scoring—and   in   some   cases   where   contextual   adaptation   reduces   critical   accuracy.   We  
believe   it   imperative   that   computer   scientists   work   in   interdisciplinary   groups   alongside  
social   scientists   for   such   efforts.   We   do   not   expect   any   easy   answers.  
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Conclusion  
While   occurrences   of   algorithmic   bias   have   been   well   documented,   their   origins   traced,   and  
their   impacts   acknowledged,   much   work   remains   to   be   done   in   unearthing   and   coming   to  
consensus   on   potential   solutions.   The   difficulty   of   this   space   extends   outside   merely  
establishing   norms   and   ethics   frameworks—every   designer   has   to   deal   with   theoretical   and  
scientific   limits   as   well   as   incongruous   notions   of   what   it   means   to   be   fair.   Unless   carefully  
considered,   certain   solutions   to   algorithmic   bias   may   in   actual   fact   exacerbate   the   issue.    If  
ethical   development   is   to   meaningfully   and   profitably   grapple   with   the   space   of   algorithmic  
bias,   these   issues   must   be   considered.  
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