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Abstract 
Ending all forms of poverty remains a primary global challenge and a key objective of the Sustainable 

Development Goals (SDGs). To effectively combat poverty, access to accurate information about the 

locations of affected populations is vital. This data enhances our comprehension of poverty's root 

causes, facilitates optimized resource allocation for poverty alleviation initiatives, and is a fundamental 

element in monitoring poverty rates over time. While censuses and surveys are the established 

benchmarks for measurement and the foundation of targeted social assistance programs like cash 

transfers, they are often resource-intensive and time-consuming. This makes them impractical for rapid 

deployment during emergencies and continuous monitoring of spatial and temporal poverty disparities, 

which is essential for comprehensive development strategies. To bridge this gap, this study examines 

the potential of utilizing alternate data sources, both publicly available data and those from private data 

providers, to gain fresh insights into poverty's spatial distribution. By employing unsupervised and 

supervised machine learning techniques, we explore the feasibility of utilizing mobile call detail records 

(CDRs) as well as geographic information system (GIS) and remote sensing (RS) data to map poverty 

spatially. Despite the limitation of lacking comprehensive, precise ground truth data for full validation, 

our initial findings suggest the approach holds promise in achieving higher spatial and temporal 

resolutions for poverty mapping.  

1. Background 
Poverty casts a long shadow over societies, leading to undesirable consequences like child mortality, 

limited access to education, societal instability & conflict, all chipping away at the quality of life (Cruz, et 

al. 2015). Countries worldwide prioritize the alleviation of poverty in its diverse forms, be it the deeply 

ingrained structural kind or the temporary setbacks that afflict certain regions, households, and 

individuals. Ending poverty in all its forms remains a major challenge and it remains the first target of 

the Sustainable Development Goals (SDGs) (Transforming our world: the 2030 Agenda for Sustainable 

Development 2015). To alleviate poverty, it is crucial that information is available on where affected 

people live. These data enhance our understanding of the causes of poverty and play a crucial role in 

better allocating resources for poverty alleviation programs and serve as a critical component for 

monitoring poverty rates over time (Transforming our world: the 2030 Agenda for Sustainable 

Development 2015). 

In economic development, poverty data serves a dual purpose. Firstly, it's crucial for assessing poverty 

at an individual level, which is vital for targeted assistance programs like cash transfers (Handa, et al. 

2012). This involves analyzing factors such as income, consumption, and relevant indicators to 

effectively identify those in urgent need of support. Secondly, poverty data helps grasp the spatial 

distribution of poverty, enabling governments and organizations to strategically identify regions with 
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high poverty rates. This knowledge informs the implementation of comprehensive development 

initiatives, including infrastructure projects and improvements in education and healthcare, all 

contributing to substantial and lasting poverty reduction (Akinyemi 2007). 

The high-resolution indicators of poverty used in targeted social assistance programs such as cash 

transfers, often rely on well-designed large-scale surveys. However, given the resource-intensive nature 

of such surveys, it is difficult to conduct them regularly or on demand. As such, even when, approximate 

estimates are needed for providing social assistance during times of crisis (e.g., COVID-19 lockdowns), 

surveys become a prohibitive tool.  Small area estimation (SAE), on the other hand, is a technique 

deployed by statistical offices around the world to obtain sub-national spatial estimates of poverty. SAE 

methods usually leverage statistical techniques to estimate poverty related parameters for sub-

populations using census data (Rao and Molina 2015) (Albacea 2020). However, census data are typically 

collected every 10 years and often released with a delay of one or more years, making the updating of 

poverty estimates challenging in most instances. However more recent research points to novel sources 

of high-resolution data that can help estimate the level of socio-economic well-being for smaller 

geographical regions (AIken and Ohlenburg 2023). 

In particular, recent work illustrates the potential of features derived from satellite remote sensing data 

(hereafter called RS data) and mobile operator call detail records (hereafter called CDRs) for spatial 

mapping poverty and socio-economic well-being. RS data captures physical attributes such as rainfall, 

temperature, vegetation, infrastructure, settlement patterns, and proximity to roads and markets 

(Engstrom, Hersh and Newhouse 2016) (Martillan and Martinez Jr 2021). On the other hand, CDRs 

provide insights into household access to financial resources through monthly credit consumption on 

mobile phones and the prevalence of mobile phone usage in an area, which can be indicative of 

remittance flows and economic opportunities (Aiken, et al. 2022). These data sources offer distinct and 

complementary information for understanding various aspects of socioeconomic conditions (Soto, et al. 

2011). 

RS and CDR data also complement each other due to their different spatial scales. CDR data, aggregated 

at the level of cell towers, provides spatial resolution determined by tower coverage, which varies 

between rural and urban areas. Within CDR data, Voronoi cells represent polygonal regions around 

towers, encompassing locations closest to each tower and they do not correspond to administrative 

boundaries. In contrast, RS data offers coarser resolution in urban areas, focusing on land properties, 

but provides continuous coverage across regions and can be aggregated at desired geographic levels.  

In this study, we employ a combination of overlapping RS data and CDRs to assess their effectiveness in 

accurately estimating spatial poverty in Sri Lanka. Here, poverty is defined based on a socio-economic 

index that we derived from the 2012 Census data. To estimate spatial distribution of poverty, we utilize 

principal component analysis (PCA) and spatial regression techniques – presenting two distinct 

approaches for integrating the two data sources. The discussion section compares our results, outlines 

the limitations of our data and methods, and suggests future research directions to build upon this 

study. 
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2. Data Collection, Materials, and Methods 
2.1. Spatial Scale and Data Processing 

The two main types of data used in this study were of two different spatial scales. In order to make sure 

that the spatial resolutions and extents matched, the data had to be further processed. The final spatial 

scale was of the analysis was chosen to be Grama Niladhari (GN) divisions of Sri Lanka, which is the most 

granular administrative division in the country. All downloaded RS data was processed and summarized 

to spatially align with the polygon boundaries of GN division boundaries. The CDRs metrics were first 

calculated at Voronoi cell levels and then mapped on to the GN boundaries. Depending on the feature 

being considered (see 2.3 below), each polygon was assigned RS and CDR values representing the mean, 

sum or mode of the corresponding data. The GN divisions with zero population were removed for two 

main reasons. First, these divisions did not contribute any relevant data for the analysis of poverty 

levels, as there were no households to consider. Second, including these divisions could introduce 

unnecessary complexity and error into the model. Therefore, 37 such divisions were excluded for the 

sake of accuracy and relevance in the poverty mapping analysis. The socioeconomic index which is used 

to train and validate the models was based on the census and was calculated at the GN level (see 2.2 

below). 

2.2. Poverty Data 
Given that Sri Lanka doesn’t have open poverty data at GN division level for the year 2013 (the year was 

determined by the time period of the CDR data that was used in the study) we had to develop our own 

socio-economic index using principal component analysis (PCA) techniques (Dias, et al. 2020). In recent 

times, PCA based spatial poverty analysis using census data has emerged as a popular and reliable 

estimate of measuring socio-economic well-being (Krishnan 2010).We selected, as our input, the  2012 

national census, which is available as a summary of counts at the Grama Niladhari Division (GND) level. 

We started with 109 variables corresponding to household and demographic characteristics of 

households and employed a variable elimination process to reduce the variable number to 61. Then we 

normalized and standardized each variable and ran PCA on the dataset. We multiplied the weights of 

the resulting first principal component with the standardized dataset and summed each row to produce 

a score for each GN Division. This score was to serve as the socioeconomic index. This method hinges on 

the assumption that that the first principal component resulting from the application of PCA on a 

dataset of socioeconomic indicators is the socioeconomic index. 

2.3. CDR & RS Data 
CDR features were generated from mobile CDR data collected from two of the leading mobile network 

operators in Sri Lanka for the year 2013. CDR features range from metrics such as basic phone usage, 

social network to metrics of user mobility and handset usage. These features are easily calculable 

metrics that do not rely on complex algorithms. They include various parameters of the corresponding 

distributions such as weekly or monthly median, mean and variance. The full list of CDR features 

generated is given in the table below.  

Table 1: Features derived from CDR data. 

Feature category Individual feature description 

Phone usage Call count, average call duration, nighttime call count, incoming call 
count, avg nighttime call duration, avg incoming call duration, avg 
outgoing call duration 
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Location/mobility Radius of gyration, home location 

Social Network Spatial entropy, avg call count per contact 

Handset type Smart/feature/basic phone 

 

We further identified, assembled, and processed 25 raster and vector datasets into a set of for the 

whole of Sri Lanka at GN division level. These data were obtained from existing sources (maps produced 

by other researchers and agencies) and produced ad hoc for this study to include environmental and 

physical metrics likely to be associated with human welfare such as vegetation indices, night-time lights, 

climatic conditions, and distance to roads or major urban areas. A full summary of assembled covariates 

is provided in the table below. Where the data did not perfectly overlap with the time period being 

considered (the calendar year of 2013), RS data sources that were either partially overlapping with or 

closest to the time period being considered were selected.  

Table 2: Features derived from GIS & Remote Sensing Data 

Feature Category Feature Description 

Accessibility Accessibility to populated places with more than 50k 
people 

Population  Population count 

Population  Population density 

Climate Mean aridity index 

Climate Average annual potential evapotranspiration [mm] 

Night-time lights VIIRS satellite night-time lights intensity 

Elevation Elevation in meters 

Vegetation  Vegetation Index 

Distance Distance to roads 

Distance Distance to waterways 

Urban/rural MODIS satellite -based global urban extent 

Protected area Protected areas 

Land cover European Space Agency land cover map values 

Demographic Pregnancies 

Demographic Births 

Ethnicity Georeferenced ethic groups 

Climate  Mean annual precipitation 

Climate Mean annual temperature 

 

2.4. Feature Selection 
Prior to statistical analyses, all CDR and RS features were log transformed for normality. Bivariate 

Pearson's correlations were computed for each pair of covariates to assess multicollinearity, and for 

high correlations (r > 0.70), we eliminated covariates that were less generalizable across 

countries/regions. 

2.5. Modeling 
Given the poverty data used for the study was derived by running PCA run on census data, we ran 

principal component analysis using features using CDR and RS data to allow for better comparable 
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results. We ran three types of models. We ran one model each using CDR and RS data separately and a 

third model combining CDR-RS data. We selected the first principal component from each of the models 

to be the measure representing the socioeconomic status of each of the GN divisions. 

In addition to PCA, we also used spatial regression techniques to predict the socio-economic index using 

the CDR and RS data. First spatial weights were assigned to the data using the nearest neighbor method. 

This method was employed as it defines the neighbor set of an observation as its nearest 'k' 

observations, effectively capturing spatial relationships based on proximity. This is particularly pertinent 

in spatial poverty mapping where geographic closeness often implies similar poverty conditions. 

Upon assigning weights, we applied various spatial models to the data. The initial model applied was the 

Ordinary Least Squares (OLS) model. However, the presence of clustering in the errors suggested that 

the OLS model may not be the most suitable for our analysis. 

In response to this, we ran a Spatial Error Model (SEM), a Spatial Lag Model (SLX), and a Spatial Durbin 

Error Model (SDEM). These models account for spatial dependencies in the data that the OLS model 

does not consider. Subsequently, we compared these models using the Akaike Information Criterion 

(AIC) and the Bayesian Information Criterion (BIC) which are. 

3. Results 
PCA Models 
Since PCA is an unsupervised machine learning technique, it is not appropriate to evaluate the derived 

models using traditional metrics like R-squared value or RMSE (root mean squared error). Instead, we 

focus on comparing the alignment between the final outputs of the models and the ground truth 

poverty index. To do this, we examine the overlap between each model and the poverty dataset by 

considering the number of common poorest GN divisions. This intersection analysis allows us to assess 

the similarity between the models and the poverty data.  

Table 3: Ability to correctly identify top N poorest Grama Niladhari Divisions 

 

An examination of the results obtained from the unsupervised technique of PCA indicate that, RS-only 

model does a reasonable job at correctly identifying the poorest Grama Niladhari divisions while both 

the CDR-only model and the combined CDR-RS model perform very poorly at correctly identifying the 

poorest GN divisions. 

Regression Models 
To assess the performance of our regression models, we used two common statistical methods for 

comparing spatial models: AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) 

(Kuha 2004). AIC helps in model selection by weighing how well a model predicts data against its 

complexity. Lower AIC scores indicate simpler models that remain effective at prediction, making them 

Top N% poorest 
GN Divisions 

% of GNs accurately identified - model output compared against ground truth (PCA) poverty data 

CDR-only CDR-RS RS-only 

Top 25% 6.1% 3.3% 45% 

Top 40% 17% 13% 61% 

Top 50% 30% 26% 71% 
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preferable for data analysis. BIC, on the other hand, also balances prediction quality and model 

complexity but has a stronger inclination toward simpler models. Lower BIC values suggest simpler 

models that are often better suited for data analysis. In general, when all other factors are equal, opting 

for a model with a lower AIC or BIC value tends to yield better results by striking a balance between 

accurate prediction and model simplicity. 

We have also used two additional metrics typically used for evaluating regression models - r2 value, 

which measures model fit or the proportion of the variance in the dependent variable that is explained 

by the independent variables and the MSE (Mean Squared Error) value which quantifies the average 

difference between predicted and observed values. Upon considering AIC & BIC criteria in concert with 

the r2 value and the MSE value, we concluded that the SLX (spatial lag) model was the optimal choice for 

our analysis. As evidenced in the tables below the SLX outperformed the SDEM model and the SLX 

model across all four-evaluation metrics across different configurations of the data sources.  

Table 3:  Evaluation metrics for the combined RS + CDR regression models (evaluated using 20% of ground truth data) 

Model type (RS+CDR) r2 value MSE AIC BIC 

SDEM Model (Spatial Durbin Error Model) – CDR-
RS models 

0.7460 2.76 53980.93 60541.07 

SEM Model (Spatial Error Model) 0.6263 4.41 60541.07 60880.63 

SLX Model (Spatial Lag Model) 0.8155 2.0 49525.64 49865.20 

 

Table 4: Evaluation metrics for the RS only regression models (evaluated using 20% of ground truth data) 

Model type (RS only) r2 value MSE AIC BIC 

SDEM Model (Spatial Durbin Error Model) – CDR-
RS models 

0.7022 3.241 56198.99 56440.45 

SEM Model (Spatial Error Model) 0.4240 16.126 78636.82 78878.29 

SLX Model (Spatial Lag Model) 0.8092 2.077 49974.79 50216.26 

 

Table 5: Evaluation metrics for the CDR only regression models (evaluated using 20% of ground truth data) 

Model type (CDR only) r2 value MSE AIC BIC 

SDEM Model (Spatial Durbin Error Model) – CDR-
RS models 

0.4570 6.7653 66454.45 66567.64 

SEM Model (Spatial Error Model) 0.4579 6.7288 66378.75 66491.93 

SLX Model (Spatial Lag Model) 0.7844 2.370 51786.79 51899.98 
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Visual comparison of model outputs 
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The maps display a color gradient from red to green, with red representing high socio-economic status 

and green representing low socio-economic status. The four maps presented for each type of model 

offer a visual sense of accuracy of our attempt in mapping poverty using remote sensing data and call 

detail records. The maps combining RS and CDR consistently appear to show a more faithful 

representation of the ground truth, with clusters and connections between those clusters clearly visible. 

This suggests that the combination of these two methods can potentially enhance the accuracy of the 

map. The RS-only maps are also reasonably accurate, as evidenced both by the evaluation metrics and 

the visual representation. This demonstrates the effectiveness of remote sensing in capturing spatial 

details. Lastly, the CDR-only map is less accurate. While CDRs provide valuable insights into 

socioeconomic behavior, including consumption and mobility patterns, CDR features used in this study 

may not be as reliable for directly predicting spatial poverty levels in absence of other complementary 

features. 

4. Discussion 
This work represents an attempt to replicate work done by Steele et al., (2017) to build predictive maps 

of poverty using a combination of CDR and RS data in the Sri Lankan setting. While it shows promising 

early results, further work needs to be done to further evaluate its efficacy in the Sri Lankan study. This 

study is also constrained by limitations of poverty data the challenges and limitations around the use of 

CDR data. The following points about the study are particularly worth highlighting. 

Spatial lag models (SLX) outperforming SDEM models & SEM models in mapping 
poverty 

Spatial lag models (SLX) could be outperforming Spatial Durbin Error Models (SDEM) and Spatial Error 

Models (SEM) in mapping poverty for several reasons. Poverty often exhibits spatial autocorrelation, 

with neighboring areas sharing similar poverty rates, making SLX models, which explicitly consider this 

spatial dependency, more effective. SDEM introduces complexity with both a spatial lag and a spatial 

error term, while SEM primarily focuses on modeling spatial errors, potentially missing direct spatial 

dependencies. In contrast, spatial lag models excel in capturing the direct influence of neighboring 

areas, providing a more accurate representation of how poverty spreads across regions, making them a 

preferred choice for poverty mapping. 

The need for better poverty data 
There are many approaches to measuring poverty and common measures include asset, consumption, 

and income-based measures of well-being. However, given the absence of granular publicly available 

poverty data at GN division level, we utilized our own socio-economic index derived using the 2012 

census data. This index was composed using principal component analysis technique that leveraged 

household and demographic characteristics of households. This relied the assumption that the first 

principal component resulting from the application of PCA on a dataset of socioeconomic indicators is 

the socioeconomic index. While this represents a reasonable approximation of poverty in data poor, 

resource-constrained settings, it is only considered to be a moderately accurate approximation. 



 
 

Page 11 of 13 
 

Extension of this work could include generating ground truth using small area estimation (SAE) 

techniques on census data available at GN division level. While SAE involves considerable modeling it’s 

use of more advanced statistical approaches such as area level and hierarchical models, is believed to be 

capable of generating better spatial approximations of poverty compared to PCA methods. 

Using more advanced modeling techniques 
The choice of modeling techniques for this work was largely guided by the type of poverty data that was 

available. Given that the poverty data (the socio-economic index calculated using the census data) was 

derived using principal component analysis (PCA) techniques, the first set of models also leveraged PCA 

techniques to enable straight forward comparisons of output. We generated 3 models (mobile only, CDR 

only, & mobile & CDR) using PCA techniques and regression techniques. However, the availability of 

better poverty data (such as those generated through SEA techniques) could enable more advanced 

modeling techniques. For example, Steele et al (2019), used hierarchical Bayesian geostatistical models 

(BGMs) to predict geographical distribution of poverty in Bangladesh. BGMs offer several advantages for 

addressing the limitations and constraints associated with modelling geolocated survey data. These 

include straightforwardly imputing missing data, allowing for the specification of prior distributions in 

model parameters and spatial covariance, and estimating uncertainty in the predictions as a distribution 

around each estimate. 

Limitations of CDR data & alternatives 
This study leveraged mobile network CDR data obtained from multiple operators for the period in 

consideration. However, the data was only obtained for a specific period and did not contain all the 

features leveraged by Steele et al., (2017) in their original study. Further, continued access to CDR data 

requires technical procedures to ensure the privacy of individuals included in the dataset and legal 

expertise to ensure that the use of data does not violate data protection laws other laws that govern the 

use of personal data in countries. These factors make the use of CDR data for poverty mapping 

prohibitive; especially when it comes to replication and extension of this work by other researchers in Sri 

Lanka as well as in other countries.  

More recent work has shown that remote sensing indicators alone can be used to effectively map spatial 

distribution of poverty (Martillan and Martinez Jr 2021). As such it might be advisable to start with a 

wider array of remote sensing data, such as optical satellite data, night-light data & radar data and 

calculator features that might be indicative of poverty. Then, through a combination of desk research & 

feature selection techniques, the optimal combination of features could be used in spatial poverty 

estimation models.  

Making poverty maps usable 
An effective poverty map should exhibit certain essential characteristics. Firstly, it should encompass the 

temporal dynamics of poverty, recognizing its dynamic nature influenced by economic fluctuations and 

seasonal variations. Additionally, the poverty map should offer high-resolution representations at local 

or sub-national levels, facilitating the identification of poverty hotspots, prioritizing interventions, and 

enabling effective monitoring of progress. Lastly, it should be cost-effective, scalable, and readily 

accessible, supporting evidence-based decision-making for policymakers and development practitioners. 

Therefore, further work in this line should prioritize using widely available ground truth (poverty) data, 

features derived from regularly updated, openly accessible datasets and flexible modeling approaches 

that meet the different needs of policy makers faced having varying priorities.
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